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CHAPTER I

Introduction

In this dissertation, we consider the asymptotics of discrete Toeplitz determinants.

We first show how one can convert this question to the asymptotics of continuous

orthogonal polynomials by using a simple identity. We then apply this method to the

width of nonintersecting processes of several different types. The asymptotic results

on width can be naturally interpreted as an identity between the Airy process and

the Tracy-Widom distribution from random matrix theory. We also prove several

variations of this interesting identity.

Some parts of this thesis had already been published. Some portions of Chapters

II, III and V were published in [14, 15]. The contents of Chapter IV and some parts

of Chapter V are going to be included in [59, 30].

1.1 Discrete Toeplitz Determinant

Let f(z) be an integrable function on the unit circle Σ and let fk :=
∫

Σ
z−kf(z) dz

2πiz

be the Fourier coefficient of f , k ∈ Z. The n-th Toeplitz determinant with symbol

f(z) is defined to be

(1.1) Tn(f) = det (fj−k)
n−1
j,k=0 .

Toeplitz determinants appear in a variety of problems in functional analysis, ran-
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dom matrices, and many other areas in mathematics and physics. One of the most

interesting questions is the asymptotic behavior of Tn(f) as n→∞. The first asymp-

totic result for Toeplitz determinants was obtained by Szegő in 1915 [71]. He proved

that if f is a continuous positive function on Σ, then

(1.2) lim
n→∞

1

n
log Tn(f) =

∫
Σ

log(f(z))
dz

2πiz
.

A few years after the Szegő’s paper appeared, the correction term to (1.2) for a

certain specific function f became an important question. This question was raised

in the context of the two dimensional Ising model [61]. Szegő improved his previ-

ous argument and obtained a refined asymptotic result in [73], which is now called

the Szegő’s strong limit theorem: if f is positive and the derivative of f is Hölder

continuous of order α > 0, then

(1.3) lim
n→∞

Tn(f)

en(log f)0
= exp

(
∞∑
k=1

k |(log f)k|2
)
,

where (log f)k denotes the k-th Fourier coefficient of log f .

This result was generalized for a much larger class of functions over the following

many years. For example, if V (z) = log(f(z)) is a complex-valued function with

Fourier coefficients Vk satisfying

(1.4)
∑
k∈Z

|k||Vk|2 <∞,

then [49]

(1.5) lim
n→∞

Tn(eV )

enV0
= e

∑∞
1 kVkV−k .

Another direction of generalizing (1.3) has been to consider the case when f

contains singularities. Fisher and Hartwig [40] introduced the following class of

symbols:

(1.6) f(z) = eV (z)z
∑m
j=0 βj

m∏
j=0

|z − zj|2αjgzj ,βj(z)z
−βj
j
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where

(1.7) zj = eiθj , j = 0, · · · ,m, 0 = θ0 < · · · < θm < 2π,

(1.8) gzj ,βj(z) =


eiπβj , 0 ≤ arg z < θj,

e−iπβj , θj ≤ arg z < 2π,

(1.9) <αj > −
1

2
, j = 0, · · · ,m, β = (β1, · · · , βm) ∈ Cm,

and V (z) is sufficiently smooth on Σ. They conjectured that for these symbols

(1.10) Tn(f) = En
∑m
j=0(α2

j−β2
j )enV0(1 + o(1))

as n→∞, where E = E(eV , α0, · · · , αm, β0, · · · , βm, θ0, · · · , θm) is an explicit func-

tion independent of n.

This conjecture was proved by Widom [79] for the case when β0 = · · · = βm = 0.

Widom’s result was then improved by Basor [18] for the case when <βj = 0, j =

0, · · · ,m, and Böttcher, Silbermann [24] for the case when |<αj| < 1
2
, |<βj| < 1

2
, j =

0, · · · ,m. Finally Ehrhardt [38] proved the full conjecture under the following two

additional conditions |||β||| < 1 and αj±βj 6= −1,−2, · · · for all j, which were known

to be necessary beforehand. Here

(1.11) |||β||| = max
j,k
|<βj −<βk|.

If the condition |||β||| < 1 is not satisfied, Tn(f) does not necessarily satisfy the

asymptotics (1.10). For general β, the asymptotics of Tn(f) was conjectured to be

(1.12) Tn(f) =
∑
β̂

Rn(f(β̂))(1 + o(1))



4

by Basor and Tracy [19], where Rn(f(β̂)) is the right hand side of (1.10) after re-

placing β by β̂, the sum is taken for all β̂ which is obtained by taking fintely many

operations (a, b) → (a − 1, b + 1) for any two coordinates in β such that |||β̂||| ≤ 1,

and αj± β̂j 6= −1,−2, · · · for all j. This conjecture was proved recently by Deift, Its

and Krasovsky [34].

The function f(z) sometimes contains a parameter, say t, and it is interesting to

consider the double scaling limit of Tn(f) as n and t both tend to infinity. This also

has been studied for various function f . For example, in [9] the authors considered

the distribution of the longest subsequence of a random permutation, which can be

expressed in terms of a Toeplitz determinant with weight f(z) = et(z+z
−1). It turns

out that the double scaling limit of this Toeplitz determinant multiplied by e−t
2

when the two parameters satisfy n = 2t + xt1/3 is equal to the GUE Tracy-Widom

distribution FGUE(x). FGUE is a distribution which appears in random matrix theory,

see Section 1.2 for more details.

In the cases above, the symbol f was assumed to be continuous. One of the goals

of this dissertation is to study the asymptotic behavior of the Toeplitz determinant

when its symbol is discrete. Let D be a discrete set on C, and let f be a function on

D. The discrete Toeplitz determinant with measure
∑

z∈D f(z) is defined as

(1.13) Tn(f,D) := det

(∑
z∈D

z−j+kf(z)

)n−1

j,k=0

.

Of course, the determinant is zero if n ≤ |D|. We assume that |D| → ∞ as n→∞.

The discrete Toeplitz determinants arise in various models. Some examples in-

clude the width of non-intersecting processes [14], the maximal crossing and nesting

of random matchings [25, 11], the maximal height of non-intersecting excursions

[57, 69, 44, 58], periodic totally asymmetric simple exclusion process [13], etc.
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Discrete Toeplitz determinants contain two natural parameters, the size of the

matrix and the cardinality of D. The function f may also contain additional pa-

rameter, say t. It is sometimes interesting to consider the limit of (1.13) when all

these parameters go to infinity. In Chapters II, III, and IV we develop a method

to evaluate the limit of discrete Toeplitz determinants and apply it to the model of

nonintersecting processes.

1.2 Random Matrices, the Airy Process and Nonintersecting Processes

Since the work of Wigner on the spectra of heavy atoms in physics in the 1950’s,

random matrix theory has evolved rapidly and became a prolific theory which has

various applications in many areas including number theory, combinatorics, proba-

bility, statistical physics, statistics, and electrical engineering [60, 3, 43].

One of the most well-known random matrix ensembles is the Gaussian Unitary

Ensemble (GUE). GUE(n) is described by the Gaussian measure

(1.14)
1

Zn
e−n trH2

dH

on the space of n× n Hermitian matrices H = (Hij)
n
i,j=1, where dH is the Lebesgue

measure and Zn is the normalization constant. This measure is invariant under uni-

tary conjugations. Its induced joint probability density for the eigenvalues λ1, λ2, · · · , λn

is given by

(1.15)
1

Z ′n

n∏
k=1

e−nλ
2
k

∏
1≤i<j≤n

|λi − λj|2, (λ1, · · · , λn) ∈ Rn,

where Z ′n is the different normalization constant.

In the celebrated work [75], Tracy and Widom showed that the largest eigenvalue

of GUE(n), after rescaling, converges to a limiting distribution which is now called
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the Tracy-Widom distribution FGUE:

(1.16) lim
n→∞

P
(
λmax ≤

√
2 +

x√
2n2/3

)
= FGUE(x).

FGUE is defined as [75]

(1.17) FGUE(x) = det (I − Ax)

of the operator Ax on L2(x,∞) with the kernel given in terms of the Airy function

Ai by

(1.18) Ax(s, t) =
Ai(s)Ai′(t)− Ai′(s)Ai(t)

s− t
.

It can also be given as an integral [75, 76]

(1.19) FGUE(x) = e−
∫∞
x (s−x)2q(s)2ds

where q is the so-called Hastings-McLeod solution to the Painlevé II equation q′′ =

2q3 + xq ([45, 41]).

It turns out that FGUE is one of the universal distributions in random matrix the-

ory and also other related areas. Even if we replace the weight function e−nλ
2

by other

general functions e−nV (λ), the limiting fluctuation of the largest eigenvalue does not

change generically [36, 33]. Wigner matrices, the random Hermitian matrices with

i.i.d. entries, also exhibit universality to FGUE [70, 74, 39, 62]. Moreover, FGUE also

appears in models outside random matrix theory, such as random permutations [9],

directed last passage percolations [50], random growth models [64], non-intersecting

random walks [51], asymmetric simple exclusion process [78], etc. These models in

statistical physics belong to the so-called KPZ class (see, e.g., [55, 27]), which is

believed to have the property that a certain observable fluctuating with a scaling

exponent 1/3. It remains as a challenging problem to prove the universality of FGUE

in the general KPZ class.
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Let us now consider a time-dependent generalization of GUE. A natural way is

to replace the entries of the GUE by Brownian motions. In this case the induced

process of the eigenvalues is called the Dyson process. In the large n limit, the pro-

cess of the largest eigenvalue converges, after appropriate centering and scaling in

both time and space, to a limiting process. This limiting process has explicit finite

dimensional distributions in terms of a determinant involving the Airy function, and

is called the Airy process. The marginal of this Airy process at any given time is

the Tracy-Widom distribution. Just like FGUE is a universal limiting distribution

of random matrices and random growth models, the Airy process is also a univer-

sal limit process. It appears in the polynuclear growth model [65], tiling models

[53], the totally asymmetric simple exclusion process (TASEP) [52], the last passage

percolation [52], and etc.

The Airy process also arises in nonintersecting processes. It was shown by Dyson

that the Dyson process is equivalent to n Brownian motions, all starting at 0 at time

0, subject to the condition that they do not intersect for all time. As such, the Airy

process also arises as an appropriate limit of many nonintersecting processes such

as Brownian bridges [1], Brownian excursions [77], symmetric simple random walk

[51], and etc. Let Xi(t), i = 1, · · · , n, be independent standard Brownian bridges

conditioned thatX1(t) < X2(t) < · · · < Xn(t) for all t ∈ (0, 1) andXi(0) = Xi(1) = 0

for all i = 1, · · · , n. It is known that as n → ∞, the top path Xn(t) converges to

the curve x = 2
√
nt(1− t), 0 ≤ t ≤ 1, and the fluctuation around the curve in an

appropriate scaling is given by the Airy process A(τ) [65]. Especially near the peak

location we have (see e.g. [52], [1])

(1.20) 2n1/6

(
Xn

(
1

2
+

2τ

n1/3

)
−
√
n

)
→ A(τ)− τ 2

in the sense of finite distribution.
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In this dissertation we compute the limiting distribution of the so-called width of

nonintersecting processes by using discrete Toeplitz determinants. Let X(t) (0 ≤ t ≤

T ) be a random process. Consider n processes (X1(t), X2(t), · · · , Xn(t)) where Xi(t)

is an independent copy of X(t), conditioned that (i) all the Xi starts from the origin

and ends at a fixed position, and (ii) X1(t) < X2(t) < · · · < Xn(t) for all t ∈ (0, T ).

Define the width of non-intersecting processes by

(1.21) Wn(T ) := sup
0≤t≤T

(Xn(t)−X1(t)).

In this dissertation, we first show that the distribution function Wn(T ) can be com-

puted explicitly in terms of discrete Toeplitz determinants. We then analyze the

asymptotics by using the method indicated in the previous section. The limiting

distribution of Wn(T ), after rescaling, is exact the Tracy-Widom distribution FGUE.

Combined with (1.20), this result gives rise to an interesting identity between the

Airy process and FGUE as follows. Since A(τ) is stationary [65], it is reasonable to

expect that A(τ) − τ 2 is small when |τ | becomes large, and that the width will be

obtained near the time t = T
2
. Moreover, intuitively the top curve Xn(t) and bottom

curve X1(t) near t = T
2

will become far away to each other. Therefore heuristically

the two curves near t = T
2

are asymptotically independent when n becomes large 1.

These heuristical arguments together with (1.20) suggest that the distribution of the

sum of two independent Airy processes is FGUE. More explicitly we have

(1.22) P
(

sup
τ∈R

(
Â(1)(τ) + Â(2)(τ)

)
≤ 21/3x

)
= FGUE(x),

where Â(1)(τ) and Â(2)(τ) are two independent copies of the modified Airy process

Â(τ) := A(τ)− τ 2. A different identity of similar favor was previously obtained by

1The asymptotical independence of two variables Xn(t) and X1(t) at t = T
2

for the nonintersecting Brownian
bridges as n tends to infinity is equavalent to the asymptotical indepedence of the extreme eigenvalues of GUE, which
was proved in [20].
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Johansson in [52]

(1.23) P
[
22/3 sup

τ∈R
Â(τ) ≤ x

]
= FGOE(x),

where FGOE(x) is an analogue of FGUE for real symmetric matrices. It is natural to

ask if there are more such identities. In Chapter V, we prove 5 more such identities.

1.3 Outline of Thesis

In Chapter II, we first review the connection between Toeplitz determinants and

orthogonal polynomials. We then discuss a simple identity between discrete Toeplitz

determinants and continuous orthogonal polynomials and how this can be used for

the asymptotics. This idea is applied to the width of nonintersecting processes in

Chapter III and Chapter IV.

In Chapter III, we consider the width of non-intersecting processes whose starting

points are same as the ending points. We show that the distribution of width can

be represented in terms of discrete Toeplitz determinants. In this case, the asso-

ciated discrete measure is real-valued. The asymptotics of these discrete Toeplitz

determinants is obtained by using the idea developed in Chapter II.

When the ending points of non-intersecting paths are not same as the starting

points, then the associated discrete measure is complex-valued. In this case, the

asymptotic analysis becomes significantly more difficult. In Chapter IV, we con-

sider one such example, and study the asymptotics of associated discrete Toeplitz

determinants. Since there is no general method for the asymptotics of orthogonal

polynomials with respect to complex discrete measure, this example should give us

new insight to this challenging question.

Finally in chapter V, we prove several identities involving the Airy process and

the Tracy-Widom distribution similar to (1.20).



CHAPTER II

Discrete Toeplitz Determinant

2.1 Toeplitz Determinant, Orthogonal Polynomials and Deift-Zhou Steep-
est Descent Method

We first review a basic relationship between Toeplitz determinants and orthogonal

polynomials.

Assume that f(z) is a positive function defined on the unit circle Σ. We define

pk(z) = κkz
k + · · · to be the orthogonal polynomials with respect to f(z) dz

2πiz
which

satisfies the following orthogonal conditions:

(2.1)

∫
Σ

pk(z)pj(z)f(z)
dz

2πiz
= δj(k),

where δj(k) is the Dirac delta function, and j, k = 0, 1, · · · . To ensure the uniqueness

of pk(z), we require κk > 0 for all k.

One can construct pk(z) directly via Toeplitz determinants with symbol f :

(2.2) pk(z) =
1√

Dk(f)Dk+1(f)
det



f0 f−1 · · · f−k

f1 f0 · · · f−k+1

...
...

. . .
...

fk−1 fk−2 · · · f−1

1 z · · · zk


, k ≥ 1,

10



11

and p0(f) = 1√
T1(f)

. Hence κ2
k = Tk(f)

Tk+1(f)
, and Tn(f) =

∏n−1
k=0 κ

−2
k . If T∞ = limn→∞ Tn(f)

is finite, then we can also express Tn(f) = T∞(f)−1
∏∞

k=n κ
2
k. These formulas provide

one way to obtain the asymptotics of Tn(f) via the asymptotics of corresponding

orthogonal polynomials.

Remark II.1. Even if we know the asymptotics of κk for all k, it could still be

complicated to estimate Tn(f) for n in certain region, where log(κk) has polynomial

type decay. For example, if we consider the asymptotics of Tn(f) as n, t→∞ when

f(z) = et(z+z
−1), then we need the asymptotics of orthogonal polynomials for all large

parameters t and n. It is known [9] that |κ2
k − 1| = O(e−ck) when 2t/k ≤ 1 − δ1,

and that κ2
k = ek−2t(2t/k)k−

1
2 (1 +O(k−1)) when 2t/k ≥ 1 + δ2, where δ1, δ2 are both

positive constants. Since | log κ2
k| diverges for the second regime, the sum of log κ2

k

may be complicated if we want to evaluate the asymptotics to the constant term for

some double scaling limits of n and t.

The research on the asymptotics of orthogonal polynomials can be traced back

to the 19th century. See [72] for an overview. A powerful method for the study of

asymptotics of orthogonal polynomials with respect to a general weight f was devel-

oped in the 1990’s using the theory of Riemann-Hilbert problems. The formulation

of orthogonal polynomials in terms of Riemann-Hilbert problem was discovered by

Fokas, Its, and Kitaev in [42]. This formulation was first obtained for orthogonal

polynomials on R, but it can be easily adopted to the orthogonal polynomials on Σ.

Considered a 2× 2 matrix Y (z) which satisfies the following conditions:

• Y (z) is analytic on C \ Σ.

• Y (z)z−nσ3 = I +O(z−1) as z →∞. Here σ3 =

 1 0

0 −1

.
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• Y+(z) = Y−(z)

 1 z−nf(z)

0 1

, for all z ∈ Σ. Here Y±(z) = limε↓0 Y ((1± ε)z).

To find Y (z) satisfying the above conditions is a matrix-valued Riemann-Hilbert

problem. For this specific problem, the solution is given in terms of orthogonal

polynomials

(2.3) Y (z) =

 κ−1
n pn(z) κ−1

n

∫
Σ
pn(s)
s−z

f(s)ds
2πisn

−κn−1p
∗
n−1(z) −κn−1

∫
Σ

p∗n−1(s)

s−z
f(s)ds
2πisn

 ,

where p∗n−1(z) = znpn−1(z̄−1). Therefore, if we obtain the asymptotics of Y (z) from

the Riemann-Hilbert problem, we then can obtain the asymptotics of the orthogonal

polynomials.

Deift and Zhou developed a method to obtain the asymptotics of Riemann-Hilbert

problems. This method was further extendedand was applied to the Riemann-Hilbert

Problems for orthogonal polynomials in [36, 35]. The key idea is to find a contour

such that the algebraically-equivalent jump matrix becomes asymptotically a con-

stant matrix on this contour and asymptotically identity matrix elsewhere. By solv-

ing the limiting (simpler) Riemann-Hilbert problem explicitly, one may obtain the

asymptotics of Y (z) as n becomes large. For the Riemann-Hilbert problem for or-

thogonal polynomials when f is analytic on Σ, if we use the notation of the so-called

g-function [37, 32], one can show that

(2.4) Y (z) = e−nlσ3/2m∞(z)enlσ3/2eng(z)σ3(1 + o(1)),

for z away from Σ, where l is a constant and m∞(z) is the solution to the deformed

Riemann-Hilbert problem with constant jump. One can further find the error terms

explicitly. See [32] for the more details.

Hankel determinant is an analog of Toeplitz determinant. If f(x) is an integrable

function on R such that
∫
R |x

kf(x)|dx < ∞ for k = 0, 1, · · · . The n-th Hankel
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determinant with symbol f is defined to be

(2.5) Hn(f) = det

(∫
R
xj+kf(x)dx

)n−1

j,k=0

.

Similarly to the Toeplitz determinant, we can define the orthogonal polynomials

pk(x) = κkx
k + · · · with respect to f(x)dx which satisfies the following orthogonal

conditions

(2.6)

∫
R
pk(x)pj(x)f(x)dx = δj(k),

for all j, k = 0, 1, · · · . Again we require κk > 0. If Hn(f) > 0 for all n ≥ 0, one can

show the existence and uniqueness of pk(x). It can be expressed as

(2.7)

pk(x) =
1√

Hk(f)Hk+1(f)
det



∫
R f(x)dx

∫
R xf(x)dx · · ·

∫
R x

kf(x)dx∫
R xf(x)dx

∫
R x

2f(x)dx · · ·
∫
R x

k+1f(x)dx

...
...

. . .
...∫

R x
k−1f(x)

∫
R x

kf(x)dx · · ·
∫
R x

2k−1f(x)dx

1 x · · · xk


for k ≥ 1 and p0(x) = 1√

H1(f)
. As a result, κ2

k = Hk(f)
Hk+1(f)

, and Hn(f) =
∏n−1

k=0 κ
−2
k =

H∞(f)
∏∞

k=n κ
2
k.

The Deift-Zhou steepest descent method still works for the asymptotics of orthog-

onal polynomials on the real line.

Example II.2. If f(x) = e−x
2
, pk(x) is the Hermite polynomial of degree k, which

is one of the most well-known orthogonal polynomials. The asymptotics of Hermite

polynomials can be obtained directly by using the usual steepest descent method

since it has an integral representation. It can also be obtained by using Deift-Zhou

steepest descent method, see [32] for details.
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In the end, we define the generalized Toeplitz/Hankel determinants and corre-

sponding orthogonal polynomials. Suppose C is a finite union of contours which do

not pass the origin and f is a (complex-valued) function on C such that

(2.8)

∫
C

zkf(z)
dz

2πiz

exists. Then define

(2.9) Tn(f,C) := det

(∫
C

z−j+kf(z)
dz

2πiz

)n−1

j,k=0

for n ≥ 1. Note that this generalized Toeplitz determinant becomes the usual

Toeplitz determinant Tn(f) defined in (1.1) when C is the unit circle.

The orthogonal polynomials pk(z), p̃k(z) ( k = 0, 1, · · · , n) with respect to f(z) dz
2πiz

on C are defined as follows. Let pk(z), p̃k(z) be polynomials with degree k which sat-

isfy the following orthogonal conditions:

(2.10)

∫
C

pk(z)p̃j(z
−1)f(z)

dz

2πiz
= δk(j)

for all k, j = 0, 1, · · · , n. Such polynomials exist and are unique up to a constant

factor provided Tk(f,C) 6= 0 for 1 ≤ k ≤ n + 1. These orthogonal polynomials

also have the three-term recurrence relations and the following Christoffel-Darboux

formula (see [34] for more details)

(2.11)
n−1∑
i=0

pi(z)p̃i(w) =
znwnpn(w−1)p̃n(z−1)− pn(z)p̃n(w)

1− zw

for all z, w ∈ C. Furthermore, the following relation between these orthogonal poly-

nomials and the generalized Toeplitz determinants hold: Tn(f,C) =
∏n−1

k=0 κkκ̃k.

The generalized Hankel determinant is defined similarly

(2.12) Hn(f,C) = det

(∫
C

zj+kdz

)n−1

j,k=0

.
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The corresponding orthogonal polynomials pk(z) (k = 0, 1, · · · , n) satisfy the follow-

ing orthogonal conditions:

(2.13)

∫
C

pj(z)pk(z)f(z)dz = δk(j)

for all k, j = 0, 1, · · · , n. Such orthogonal polynomials exist and are unique up to

the factor −1 provided Hk(f,C) 6= 0 for 1 ≤ k ≤ 2n + 2. It is easy to see that the

three-term recurrence relations and Christoffel-Darboux formula still hold and the

proofs are exact the same as that for the orthogonal polynomials on the real line.

2.2 Discrete Toeplitz/Hankel Determinant and Discrete Orthogonal Poly-
nomials

It is natural to ask the analogous case when the measure is discrete. More explic-

itly, let D be a countable discrete set on C. Suppose f is a function on D. Define

the discrete Toeplitz/Hankel determinant with measure
∑

z∈D f(z) as

(2.14) Tn(f,D) := det

(∑
z∈D

z−j+kf(z)

)n−1

j,k=0

,

(2.15) Hn(f,D) := det

(∑
z∈D

zj+kf(z)

)n−1

j,k=0

.

We emphasize two important features in addition to discreteness of the associated

measure. The first is that the support of the measure is not necessarily a part of the

unit circle (or real line). The second is that the measure may be complex-valued.

These two changes do not affect the algebraic formulation much, but significantly

increase the difficulty of the asymptotic analysis.

Similarly to the continuous Toeplitz/Hankel determinants, one can find the rela-

tion between discrete Toeplitz/Hankel determinants and discrete orthogonal polyno-

mial.
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For discrete Toeplitz determinants, one introduces the discrete orthogonal poly-

nomials as follows. Let pk(z) = κkz
k + · · · and p̃k(z) = κ̃kz

k + · · · be the orthogonal

polynomials with respect to the discrete measure
∑

z∈D f(z) which satisfy the fol-

lowing orthogonal condition

(2.16)
∑
z∈D

pk(z)p̃j(z
−1)f(z) = δj(k)

for all j, k = 0, 1, · · · , n. If Tk(f,D) 6= 0 for all 1 ≤ k ≤ n, one can show the

orthogonal polynomials exist and are unique up to a constant factor.

Remark II.3. When f > 0 and D is a subset of the unit circle, then it is a direct to

check p̃k(z) = pk(z̄).

Similarly to the continuous orthogonal polynomials (2.2), one can construct the

discrete orthogonal polynomials pk(z) and p̃k(z) as following:

pk(z) =
1√

Tk(f,D)Tk+1(f,D)

det



∑
z∈D f(z)

∑
z∈D zf(z) · · ·

∑
z∈D z

kf(z)∑
z∈D z

−1f(z)
∑

z∈D f(z) · · ·
∑

z∈D z
k−1f(z)

...
...

. . .
...∑

z∈D z
−k+1f(z)

∑
z∈D z

−k+2f(z) · · ·
∑

z∈D zf(z)

1 z · · · zk


,

(2.17)

p̃k(z
−1) =

1√
Tk(f,D)Tk+1(f,D)

det



∑
z∈D f(z)

∑
z∈D z

−1f(z) · · ·
∑

z∈D z
−kf(z)∑

z∈D zf(z)
∑

z∈D f(z) · · ·
∑

z∈D z
−k+1f(z)

...
...

. . .
...∑

z∈D z
k−1f(z)

∑
z∈D z

k−2f(z) · · ·
∑

z∈D z
−1f(z)

1 z−1 · · · z−k


,

(2.18)
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for all 1 ≤ k ≤ n, and p0(z) = p̃0(z) = 1√
T1(f,D)

.

Therefore one can write Tn(f,D) =
∏n−1

k=0 κ
−1
k κ̃−1

k .

In [12], the authors extended the Deift-Zhou steepest descent method to the dis-

crete orthogonal polynomials when D ⊂ R. For the case when D ⊂ Σ, we have the

following. Define

(2.19) Y (z) =

 κ−1
n pn(z) κ−1

n

∑
s∈D

pn(s)
s−z

f(s)
sn−1

Y21(z)
∑

s∈D
Y21(s)
s−z

f(s)
sn−1

 ,

where Y21(z) is given by

(2.20)

(−1)n

Tn(f,D)
det



∑
z∈D z

−1f(z)
∑

z∈D f(z) · · ·
∑

z∈D z
n−2f(z)∑

z∈D z
−2f(z)

∑
z∈D z

−1f(z) · · ·
∑

z∈D z
n−3f(z)

...
...

. . .
...∑

z∈D z
−n+1f(z)

∑
z∈D z

−n+2f(z) · · ·
∑

z∈D f(z)

1 z · · · zn−1


.

Then one can show that Y (z) is the unique solution to the Riemann-Hilbert

problem which has the following requirements:

• Y(z) is analytic for z ∈ C \ D.

• Y (z)z−nσ3 = I +O(z−1) as z →∞.

• At each node z ∈ D, the first column of Y (z) is analytic and the second column

of Y (z) has a simple pole, where the residue satisfies the condition

(2.21) Resz′=zY (z′) = lim
z′→z

Y (z′)

 0 − f(z′)
z′n−1

0 0

 .

Similarly, one can find the corresponding Riemann-Hilbert problem for p̃n(z).

It is of great interests to solve this type of discrete Riemann-Hilbert problem

asymptotically. Consider the case when D is a subset of the unit circle and f(z) =
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e−nV (z) where V (z) is a real function on the unit circle. If we ignore the discreteness,

there is a so-called equilibrium measure dµ0(z) such that the following energy function

reaches its minimal at µ0

(2.22) E(µ) := −
∫

Σ

∫
Σ

log |z − w|dµ(z)dµ(w) +

∫
Σ

V (z)dµ(z).

The g-function for the corresponding Riemann-Hilbert problem can be constructed by

using this equilibrium measure. And the asymptotics of the continuous orthogonal

polynomials will also be relevant to µ0. One can see the relation heuristically as

following. By using (2.2) one can write

(2.23) pn(z) = Cn

∫
Σn
e2

∑
1≤i<j≤n |zi−zj |−n

∑n
i=1 V (zi)+

∑n
i=1 log(z−zi) dz1

2πiz1

· · · dzn
2πizn

,

therefore heuristically one may expect that

(2.24) pn(z) ∼ Cne
−n2E(µ0)+n

∫
Σ log(z−s)dµ0(s).

Now we take the discreteness into consideration. This condition will give a so-

called upper constraint on the equilibrium measure, which requires that the measure

µ0 is bounded above by the counting measure |D|−1
∑

z∈D δz. This restrictions can

be heuristically seen in the discrete version of (2.23) where zi’s are selected from

the nodes set D. In [12], the authors systematically discussed this upper constraint

issue for discrete discrete orthogonal polynomials on the real line R. They remove

the poles and deform the corresponding discrete Riemann-Hilbert problem to a usual

Riemann-Hilbert problem with jump contours. Once the upper constraint condition

is triggered, the g-function will has a so-called saturated region. By deforming the

Riemann-Hilbert problem accordingly one will still be able to obtain the asymptotics

of Y (z) when the parameters go to infinity simultaneously. Their method is also

believed to work for the upper constraint issue on the unit circle Σ.
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As a result, for the discrete Toeplitz determinant with positive symbol f and D

is a subset of the unit circle, one can find the asymptotics of the discrete orthogonal

polynomials. Furthermore, it is possible to find the asymptotics of Tn(f,D) by using

that of discrete orthogonal polynomials. However, there are some limitations of this

approach:

First, even if the upper constraint is inactive, the asymptotics of the discrete or-

thogonal polynomials will have the same leading term with that of the corresponding

continuous orthogonal polynomials. Therefore one would expect some complications

in summarizing log κk’s in certain parameter region, as we mentioned in the Remark

II.1. We will see from Theorem II.6 that these complicities come from the continuous

counterpart of Tn(f,D).

Second, if the upper constraint is active, we will have new complications coming

from the saturated region. In this case, the leading terms of the discrete orthogonal

polynomials will be different from the continuous orthogonal polynomials. It is not

clear whether one can summarize log κk’s for these k’s.

Finally, in some cases we are interested in the asymptotics of Tn(f,D) when

f is not real. In these cases we do not have a good understanding of the upper

constraint or equilibrium measure, hence it is not clear how to apply the techniques

of the saturated region of the equilibrium measure to the corresponding discrete

orthogonal polynomials.

For the discrete Hankel determinant Hn(f,D) we can similarly define the orthogo-

nal polynomials and construct the corresponding discrete Riemann-Hilbert problem.

And we will have similar limitations to find the asymptotics of Hn(f,D) by using

that of discrete orthogonal problems, as we discussed above.
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2.3 A Simple Identity on the Discrete Toeplitz/Hankel Determinant

One of the main results of this dissertation is a simple identity on the discrete

Toeplitz/Hankel determinant. This identity expresses the discrete Toeplitz/Hankel

determinant as the product of a continuous Toeplitz/Hankel determinant and a Fred-

holm determinant, as explained below.

We first consider the case of discrete Toeplitz determinant. The case of discrete

Hankel determinant will be stated in the end. To state the identity, let Ω be a

neighborhood of D. Suppose γ(z) be a function which is analytic in Ω and D = {z ∈

Ω|γ(z) = 0}. Moreover, all these roots are simple. Note that the existence of γ is

guaranteed by Weierstrass factorization theorem.1 We assume the followings:

(a) f(z) can be extended to an analytic function in Ω. We still use the notation

f(z) for this analytic function.

(b) There exists a finite union of oriented contours C in Ω, such that 0 /∈ C and

(2.25)

∫
C

γ′(z)

2πiγ(z)
zkf(z)dz =

∑
z∈D

zkf(z)

for all |k| ≤ n− 1.

(c) There exists a function ρ(z) on C such that the (generalized) Toeplitz deter-

minants with symbol fρ

(2.26) Tk(fρ,C) = det

(∫
C

z−i+jf(z)ρ(z)
dz

2πiz

)l−1

i,j=0

exists and is nonzero, for all 1 ≤ k ≤ n.

Remark II.4. When D is a subset of the unit circle Σ, one can choose C to be the

union of the following two circles both centered at the origin. One is of radius 1 + ε

and is oriented in counterclockwise direction. The other one is of radius 1− ε and is
1If D = {z1, · · · , zm} is a finite set, one can define γ(z) =

∏m
i=1(z − zi) which is a polynomials.
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oriented in clockwise direction. Here ε > 0 is a constant such that f(z) is analytic

within the region enclosed by C. Then (b) is automatically satisfied by a residue

computation.

Remark II.5. If ρ(z) is analytic in a neighborhood of C, the continuous Toeplitz

determinants (2.26) and the corresponding orthogonal polynomials are independent

of the choice of C.

Now we are ready to state the main Theorem.

Theorem II.6. Under the assumptions (a), (b) and (c) above, we have

(2.27) Tn(f,D) = Tn(fρ,C) det(I +K)

where det(I +K) is a Fredholm determinant defined by

(2.28) det(I +K) := 1 +
∞∑
l=1

1

l!

∫
C

· · ·
∫
C

det (K(zj, zk))
l−1
j,k=0

dz0

2πiz0

· · · dzl−1

2πizl−1

,

K is an integral operator with kernel

(2.29)

K(z, w) =
√
v(z)v(w)f(z)f(w)

(z/w)
n
2 pn(w)p̃n(z−1)− (w/z)

n
2 pn(z)p̃n(w−1)

1− zw−1
,

pn(z), p̃n(z) are orthogonal polynomials with respect to f(z)ρ(z) dz
2πiz

on C, as we

defined at the end of Section 2.1, and

(2.30) v(z) :=
zγ′(z)

γ(z)
− ρ(z).

Proof. We first use (2.25) and write

Tn(f,D) = det

(∫
C

γ′(z)

2πiγ(z)
z−j+kf(z)dz

)n−1

j,k=0

=
1∏n−1

k=0 κkκ̃k
det

(∫
C

γ′(z)

2πiγ(z)
pk(z)p̃j(z

−1)f(z)dz

)n−1

j,k=0

=
1∏n−1

k=0 κkκ̃k
det

(
δj(k) +

∫
C

pk(z)p̃j(z
−1)v(z)f(z)

dz

2πiz

)n−1

j,k=0

,

(2.31)



22

where we performed the row/column operations in the second equation and used

the orthogonal conditions of pk(z), p̃j(z) in the third equation. Now we use the well-

known identity det(I+AB) = det(I+BA) where A is an operator from L2(Σ, dz
2πiz

) to

l2({0, · · · , n− 1}) with kernel A(j, z) := p̃j(z
−1)v(z)f(z) and B is an operator from

l2({0, · · · , n − 1}) to L2(Σ, dz
2πiz

) with kernel B(z, k) := pk(z), and the Christoffel-

Darboux formula (2.11)

(2.32) Tn(f,D) =
1∏n−1

k=0 κkκ̃k
det
(
I + K̃

)
where

(2.33) K̃(z, w) = v(z)f(z)
(z/w)npn(w)p̃n(z−1)− pn(z)p̃n(w−1)

1− zw−1
.

By applying Tn(fρ,C) = 1∏n−1
k=0 κkκ̃k

and a conjugation on the determinant, we have

(2.34) Tn(f,D) = Tn(fρ,C) det(1 +K).

Similarly for the discrete Hankel determinant Hn(f,D), let Ω be a neighborhood

of D. Suppose γ(z) be a function which is analytic in Ω and D = {z ∈ Ω|γ(z) = 0}

is the set of all the roots of γ in Ω. Moreover, all these roots are simple. We assume

the followings:

(a) f(z) is a non-trivial analytic function on Ω.

(b) There exists a contour C such that (2.25) holds for all 0 ≤ k ≤ 2n− 2.

(c) There exists a function ρ(z) on C such that the (generalized) Hankel determi-

nants with symbols fρ

(2.35) Hk(fρ,C) = det

(∫
C

zi+jf(z)ρ(z)

)k−1

i,j=0

exists and is nonzero, for all 1 ≤ k ≤ n.

We have the following analogous result to Theorem II.6.
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Theorem II.7. Under the assumptions (a), (b) and (c) above, then

(2.36) Hn(f,D) = Hn(fρ,C) det(I +K)

where det(I +K) is a Fredholm determinant defined by

(2.37) det(I +K) := 1 +
∞∑
l=1

1

l!

∫
C

· · ·
∫
C

det (K(zj, zk))
l−1
j,k=0 dz0 · · · dzl−1,

K is an integral operator with kernel

(2.38) K(z, w) =
√
v(z)v(w)f(z)f(w)

κn−1

κn

pn(z)pn−1(w)− pn−1(z)pn(w)

z − w
,

pk(z) = κkz
k + · · · is the continuous orthogonal polynomial of degree k with respect

to f(z)ρ(z)dz on C, k = 0, · · · , n, and

(2.39) v(z) :=
γ′(z)

2πiγ(z)
− ρ(z).

(2.27) and (2.36) are two simple identities which relate the discrete Toeplitz/Hankel

determinants to the continuous Toeplitz/Hankel determinants. These continuous

Toeplitz/Hankel determinants have natural interpretation as follows. Assume that

(1) D = Dm contains a large parameter m, (2) both C and fρ are independent of m,

and (3) γ = γm satisfies

(2.40) lim
m→∞

zγ′m(z)

ρ(z)γm(z)
= 1

for the Toeplitz case or

(2.41) lim
m→∞

γ′m(z)

2πiρ(z)γm(z)
= 1

for the Hankel case, for all z ∈ C. Under these three assumptions, we have

(2.42) Tn(fρ,C) = lim
m→∞

Tn(f,Dm)
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in Theorem II.6, or

(2.43) Hn(fρ,C) = lim
m→∞

Hn(f,Dm)

in Theorem II.7. Therefore, the continuous Toeplitz/Hankel determinants in Theo-

rem II.6 and Theorem II.6 can be interpreted as the limit of the discrete Toeplitz/Hankel

determinants as the parameter m of the nodes set goes to infinity. Moreover, the

Fredholm determinant det(1 + K) can be understood as the ratio of the discrete

Toeplitz/Hankel determinant and its continuous counterpart.

Now we discuss an application of these two identities (2.27) and (2.36). They can

be used to analyze the asymptotics of discrete Toeplitz/Hankel determinants as all

the parameters go to infinity. Compared with the approach of discrete orthogonal

polynomials mentioned in the previous section, these two identities have the following

advantages.

The most important advantage of this method is that one can use continuous

orthogonal polynomials instead of discrete orthogonal polynomials to do the asymp-

totic analysis of the discrete Toeplitz/Hankel determinants. As discussed in the

previous two sections, there is a more developed theory for the asymptotics of con-

tinuous orthogonal polynomials than that for discrete orthogonal polynomials. The

Deift-Zhou steepest descent method works for a very general class of weight func-

tions f(z), whereas the saturated region argument works for a less general class

of weight function. Moreover, even if the weight functions f is nice enough, the

asymptotic analysis of continuous orthogonal polynomials is always easier than that

of discrete orthogonal polynomials. Considering these two factors, it is a significant

simplification to convert the problem to continuous orthogonal polynomials.

The second advantage of this method is that the kernel K(z, w) has a nice struc-

ture. It contains a Christoffel-Darboux kernel part which only depends on the con-



25

tinuous orthogonal polynomials, and a multiplier part which has singularities on D.

The Christoffel-Darboux kernel arises naturally in the unitary invariant ensembles

of random matrix theory and is well-studied. It turns out to be convergent, after

rescaling, to the so-called sine kernel or Airy kernel in unitary invariant ensembles

[36, 35]. Therefore the asymptotics of the kernel K(z, w) can be obtained similarly.

Moreover, the Christoffel-Darboux structure can be utilized to rewrite the Fredholm

determinant det(1+K) when the original kernel is ineffective for asymptotic analysis

or the deformation of integral contours is obstructed by the singularities of K. See

Section 4.2.1 for details.

Finally, these two identities give a way to compute the ratio of the discrete Han-

kel/Toeplitz determinants and its continuous counterpart without computing any of

these determinants. Sometimes this ratio has combinatorial meaning and its asymp-

totics is of interests [14, 59, 13]. It turns out that the asymptotics of this ratio can

be computed out even when we do not know or cannot compute the asymptotics of

the continuous and discrete Toeplitz/Hankel determinants.

As an application, we will discuss the following four examples of discrete Toeplitz/Hankel

determinant:

(a) Hn(e−nx
2
,DM), where DM = {

√
2πM−1n−1/2k|k ∈ Z}.

(b) Tn(e
T
2

(z+z−1),DM), where DM = {z|zM = 1}.

(c) Tn(z−T (1 + z)2T ,DM), where DM = {z|zM = 1}.

(d) Tn(z−aeTz,DM), where DM = {zM = rM} for certain constant r.

All these examples comes from the models of non-intersecting processes. In the

first three examples, the weight function is real on the set of nodes. And in the

last example, the weight function is complex-valued on the set of nodes. We will

illustrate how the identities (2.27) and (2.36) apply to these models.



CHAPTER III

Asymptotics of the Ratio of Discrete Toeplitz/Hankel
Determinant and its Continuous Counterpart, the Real

Weight Case

In this chapter, we apply the idea discussed in Chapter II to the width of noninter-

secting processes of three different types: Brownian bridges, continuous-time simple

random walk, discrete time simple random walk. The main part of this chapter was

published in [14].

3.1 Nonintersecting Brownian Bridges

Let Xi(t), i = 1, · · · , n, be independent standard Brownian motions conditioned

that X1(t) < X2(t) < · · · < Xn(t) for all t ∈ (0, 1) and Xi(0) = Xi(1) = 0 for all

i = 1, · · · , n. The width is defined as

(3.1) Wn := sup
0≤t≤1

(Xn(t)−X1(t)) .

Note that the event that Wn < M equals the event that the Brownian motions

stay in the chamber x1 < x2 < · · · < xn < x1 +M for all t ∈ (0, 1). An application of

the Karlin-McGregor argument in the chamber [56, 46] implies the following formula.

Proposition III.1. Let Wn be defined in (3.1). Then

(3.2) P (Wn < M) =

( √
2π

M
√
n

)n
Hn(f)

∫ 1

0

Hn(f,Ds)ds, f(x) = e−nx
2

,

26
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where

(3.3) Ds := DM,s =

{ √
2π

M
√
n

(m− s) : m ∈ Z
}
.

By using Theorem II.7, the asymptotics of the above probability can be studied

by using the continuous orthogonal polynomials with respect to e−nx
2
, i.e. Hermite

polynomials. We obtain:

Theorem III.2. Let Wn be the width of n non-intersecting Brownian bridges with

duration 1 given in (3.1). Then for every x ∈ R,

(3.4) lim
n→∞

P
(
(Wn − 2

√
n)22/3n1/6 ≤ x

)
= FGUE(x).

Remark III.3. The discrete Hankel determinant Hn(F,D0) with s = 0 was also ap-

peared in [44] (see Model I and the equation (14), which is given in terms of a multiple

sum) in the context of a certain normalized reunion probability of non-intersecting

Brownian motions with periodic boundary condition. In the same paper, a heuristic

argument that a double scaling limit is F (x) was discussed. Nevertheless, the inter-

pretation in terms of the width of non-intersecting Brownian motions and a rigorous

asymptotic analysis were not given in [44].

3.2 Proof of Proposition III.1

We prove Proposition III.1.

Let Dn := {x0 < x1 < · · · < xn−1} ⊂ Rn. Fix α = (α0, · · · , αn−1) ∈ Dn and

β = (β0, · · · , βn−1) ∈ Dn. Let X(t) = (X0(t), X1(t), · · · , Xn−1(t)) be n independent

standard Brownian motions. We denote the conditional probability that X(0) = α

and X(1) = β by Pα,β. Let N0 be the event that X(t) ∈ Dn for all t ∈ (0, 1) and let

N1 be the event that X(t) ∈ Dn(M) := {x0 < x1 < · · · < xn−1 < x0 + M}. Then

P(Wn < M) may be computed by taking the limit of
Pα,β(N1)

Pα,β(N0)
as α, β → 0.



28

From the Karlin-McGregor argument [56], Pα,β(N0) =
det[p(αj−βk)]n−1

j,k=0∏n−1
j=0 p(αj−βj)

, where

p(x) = 1√
2π
e−

x2

2 . On the other hand, the Karlin-McGregor argument in the chamber

Dn(M) was given for example in [46] and implies the following. For convenience of

the reader, we include a proof.

Lemma III.4. The probability Pα,β(N1) equals

(3.5)
1∏n−1

j=0 p(αj − βj)

∑
hj∈Z

h0+h1+···+hn−1=0

det [p(αj − βk + hkM)]n−1
j,k=0 .

Proof. For β = (β0, · · · , βn−1) ∈ Dn(M), let LM(β) be the set of all n-tuples (β′0 +

h0M, · · · , β′n−1 +hn−1M) where (β′0, · · · , β′n−1) is an re-arrangment of (β0, · · · , βn−1)

and h0, · · · , hn−1 are n integers of which the sum is 0. The key property of LM(β)

is that LM(β) ∩ Dn(M) = {β}. Indeed note that since β ∈ Dn(M), we have |β′i −

β′j| < M for all i, j. Thus if (β′0 + h0M, · · · , β′n−1 + hn−1M) ∈ Dn(M), then we

have h0 ≤ · · · ≤ hn−1 ≤ h0 + 1. Since h0 + · · · + hn−1 = 0, this implies that

h0 = · · · = hn−1 = 0. This implies that β′j = βj for j and LM(β) ∩Dn(M) = {β}.

Now we consider n independent standard Brownian motions X(t), 0 ≤ t ≤ 1,

satisfying X(0) = α and X(1) ∈ LM(β). Then one of the following two events

happens:

(a) X(t) ∈ Dn(M) for all t ∈ [0, 1]. In this case, X(1) = β.

(b) There exists a smallest time tmin such that X(tmin) is on the boundary of

the chamber Dn(M). Then almost surely one of the following two events happens:

(b1) a unique pair of two neighboring Brownian motions intersect each other at

time tmin, (b2) Xn−1(tmin) − X0(tmin) = M . By exchanging the two corresponding

Brownian motions after time tmin in the case (b1), or replacing X0(t), Xn−1(t) by

Xn−1(t) − M,X0(t) + M respectively after time tmin in the case (b2), we obtain

two new Brownian motions. See Figure 3.1 for an illustration. Define X∗(t) be the
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M M

Figure 3.1: Illustration of exchanging two paths

these two new Brownian motions together with the other n − 2 Brownian motions.

Then clearly, X∗(1) ∈ LM(β). It is easy to see that (X∗)∗(t) = X(t) and hence this

defines an involution on the event (b) almost surely. By expanding the determinant

in the sum in (3.5) and applying the involution, we find that that this sum equals

the probability that X(t) is from α to β such that X(t) stays in Dn(M). Hence

Lemma III.4 follows.

Define the generating function

(3.6) g(x, θ) :=
∑
h∈Z

p(x+ hM)eiMhθ.

It is direct to check that the sum in (3.5) equals M
2π

∫ 2π
M

0
det [g(αj − βk, θ)]n−1

j,k=0 dθ.

Thus, we find that

(3.7)
Pα,β(N1)

Pα,β(N0)
=

M
2π

∫ 2π
M

0
det [g(αj − βk, θ)]n−1

j,k=0 dθ

det [p(αj − βk)]n−1
j,k=0

.

By taking the limit α, β → 0, we obtain:

Lemma III.5. We have

(3.8) P (Wn < M) =

∫ 1

0

( √
2π

M
√
n

)n∑
x∈Dnm,s

∆(x)2
∏n−1

j=0 e
−nx2

j∫
x∈Rn ∆(x)2

∏n−1
j=0 e

−nx2
jdxj

ds,
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where Dm,s :=
{ √

2π
M
√
n
(m− s) : m ∈ Z

}
⊂ R and ∆(x) denotes the the Vandermonde

determinant of x = (x0, · · · , xn−1).

Proof. We insert p(x) = 1√
2π
e−

x2

2 into (3.6) and then use the Poisson summation

formula to obtain

(3.9) g(x, θ) =
1

M

∑
h∈Z

e−
1
2

( 2πh
M
−θ)2+ix( 2πh

M
−θ).

Using the Andreief’s formula [4], det [g(αj − βk, θ)]n−1
j,k=0 equals

1

n!Mn

∑
h∈Zn

det
[
eiαj(

2πhk
M
−θ)
]n−1

j,k=0
det
[
e−iβj(

2πhk
M
−θ)
]n−1

j,k=0

n−1∏
j=0

e−
1
2

(
2πhj
M
−θ)2

.(3.10)

Since det [exjyk ]n−1
j,k=0 = c∆(x)∆(y)(1 + O(y)) with c =

∏n−1
j=0

1
j!

as y → 0 for each x,

we find that

(3.11) lim
α,β→0

det [g(αj − βk, θ)]n−1
j,k=0

c2∆(α)∆(β)
=

(2π/M)n(n−1)

n!Mn

∑
h∈Zn

∆ (h)2
n−1∏
j=0

e−
1
2

(
2πhj
M
−θ)2

On the other hand, using p(x) = 1
2π

∫
R e
− 1

2
y2+ixydy,

(3.12) lim
α,β→0

det [p(αj − βk)]n−1
j,k=0

c2∆(α)∆(β)
=

1

(2π)nn!

∫
h∈Rn

∆(h)2

n−1∏
j=0

e−
1
2
h2
jdhj.

Inserting (3.11) and (3.12) into (3.7), we obtain (3.8) after appropriate changes of

variables.

Proposition III.1 follows from Lemma III.5 immediately.

3.3 Proof of Theorem III.2

We apply Theorem II.7 to Proposition III.1. Set

(3.13) d = dM,n :=
M
√
n√

2π
,

(3.14) γM(z) = sin (π(dz + s))
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and

(3.15) C = C+ ∪ C−

where the direction of C+ = R + i with direction from +∞ + i to −∞ + i, and

C− = R− i with direction from −∞− i to +∞− i.

Furthermore, we set

(3.16) ρ(z) = ±d
2

which satisfies

(3.17) lim
M→∞

γ′M(z)

2πiρ(z)γM(z)
= 1

for z ∈ C±, as discussed in the paragraph after Theorem II.7. Note that d−nHn(f,DM,s) =

Hn(d−1f,DM,s). Let pj(x) = κjx
j + · · · be the orthonormal polynomials with respect

to the weight f(z)ρ(z) on C, which are exact the same as the orthogonal polynomials

with respect to the weight e−nx
2

on R (see Remark II.4). Then from Theorem II.7,

(3.18) P (Wn < M) =

∫ 1

0

Ps(M)ds, Ps(M) = det (1 +Ks)L2(C+∪C−,dz) ,

where

(3.19) Ks(z, w) = KCD(z, w)vs(z)
1
2vs(w)

1
2 e−

n
2

(z2+w2).

Here

(3.20) vs(z) :=


− cos(π(dz+s))

2i sin(π(dz+s))
− 1

2
= e2πi(dz+s))

1−e2πi(dz+s) , z ∈ C+,

cos(π(dz+s))
2i sin(π(dz+s))

− 1
2

= e−2πi(dz+s)

1−e−2πi(dz+s) , z ∈ C−,

and KCD is the usual Christoffel-Darboux kernel

(3.21) KCD(z, w) =
κn−1

κn

pn(z)pn−1(w)− pn−1(z)pn(w)

z − w
.
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We set

(3.22) M = 2
√
n+ 2−2/3n−1/6x.

The asymptotic of Ps(M) is obtained in two steps. The first step is to find the

asymptotics of the orthonormal polynomials for z in complex plane The second step

is to insert them into the formula of Ks and then to prove the convergence of an

appropriately scaled operator in trace class. It turns out that the most important

information is the asymptotics of the orthonormal polynomials for z close to z = 0

with order n−1/3. Such asymptotics can be obtained from the method of steepest-

descent applied to the integral representation of Hermite polynomials. However,

here we proceed using the Riemann-Hilbert method as a way of illustration since the

orthonormal polynomials for the other non-intersecting processes to be discussed in

the next section are not classical and hence lack the integral representation.

For the weight e−nx
2
, the details of the asymptotic analysis of the Riemann-Hilbert

problem can be found in [36] and [32]. Let Y (z) be the (unique) 2× 2 matrix which

(a) is analytic in C\R, (b) satisfies Y+(z) = Y−(z)
(

1 e−nz
2

0 1

)
for z ∈ R, and (c)

Y (z) = (1 +O(z−1))
(
zn 0
0 z−n

)
as z →∞. It is well-known ([42]) that

(3.23) KCD(z, w) =
Y11(z)Y21(w)− Y21(z)Y11(w)

−2πi(z − w)
.

Let

(3.24) g(z) :=
1

π

∫ √2

−
√

2

log(z − s)
√

2− s2ds

be the so-called g-function. Here log denotes the the principal branch of the log-

arithm. It can be checked that −g+(z) − g−(z) + z2 is a constant independent of

z ∈ (−
√

2,
√

2). Set l to be this constant:

(3.25) l := −g+(z)− g−(z) + z2, z ∈ (−
√

2,
√

2).
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Set

(3.26) m∞(z) :=

β+β−1

2
β−β−1

2i

β−β−1

−2i
β+β−1

2

 , β(z) :=

(
z −
√

2

z +
√

2

)1/4

,

where the function β(z) is defined to be analytic in C\[−
√

2,
√

2] and to satisfy

β(z)→ 1 as z →∞. Then the asymptotic results from the Riemann-Hilbert analysis

is given in Theorem 7.171 in [32]:

(3.27) Y (z) = e−
nl
2
σ3(In + Er(n, z))m∞(z)e

nl
2
σ3eng(z)σ3 , z ∈ C\R,

where the error term Er(n, z) satisfies (see the remark after theorem 7.171)

(3.28) sup
|Imz|≥η

|Er(n, z)| ≤ C(η)

n

for a positive constant C(η), for each η > 0. An inspection of the proof shows that

the same analysis yields the following estimate. The proof is basically the same and

we do not repeat.

Lemma III.6. Let η > 0. There exists a constant C(η) > 0 such that for each

0 < α < 1,

(3.29) sup
z∈Dn

|Er(n, z)| ≤ C(η)

n1−α ,

where Dn := {z : |Imz| > η
nα
, |z ±

√
2| > η}.

We now insert (3.27) into (3.23), and find the asymptotics of K. Before we do so,

we first note that the contours C+ and C− in the formula of Ps(M) can be deformed

thanks to the Cauchy’s theorem. We choose the contours as follows, and we call them

C1 and C2 respectively. Let C1 be an infinite simple contour in the upper half-plane

of shape shown in Figure 3.2 satisfying

(3.30) dist(R, C1) = O(n−1/3), dist(±
√

2, C1) = O(1).
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Figure 3.2: C1 = C1,out ∪ C1,in, C2 = C2,out ∪ C2,in

Set C2 = C1. Later we will make a more specific choice of the contours. Then

from Lemma III.6, Er(n, z) = O(n−2/3) for z ∈ C1 ∪ C2. Also since β(z) = O(1),

β(z)−1 = O(1), and arg(β(z)) ∈
(
−π

4
, π

4

)
for z ∈ C1 ∪ C2, we have β−β−1

β+β−1 = O(1) for

z ∈ C1 ∪ C2. Thus, we find from (3.27) that

(3.31) Y11(z) = eng(z)
β(z) + β(z)−1

2
(1 +O(n−2/3))

and

(3.32) Y21(z) = eng(z)+nl
(
O(n−2/3) +

β(z)− β(z)−1

−2i
(1 +O(n−2/3))

)
for z ∈ C1 ∪ C2. On the other hand, from the definition (3.20) of vs and the choice

of C1 there exists a positive constant c such that

vs(z) =


e2πi(dz+s)(1 +O(e−cn

1/6
)), z ∈ C1,

e−2πi(dz+s)(1 +O(e−cn
1/6

)), z ∈ C2.

(3.33)

Therefore, we find that for z, w ∈ C1 ∪ C2,

(3.34) Ks(z, w) =
f1(z)f2(w)− f2(z)f1(w)

−2πi(z − w)
enφ(z)+nφ(w),
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where

(3.35) φ(z) :=


g(z)− 1

2
z2 + 1

2
l + iM√

2n
z, Im(z) > 0,

g(z)− 1
2
z2 + 1

2
l − iM√

2n
z, Im(z) < 0,

and f1, f2 are both analytic in C\R and satisfy

(3.36) f1(z) =


eisπ β(z)+β(z)−1

2
(1 +O(n−2/3)), z ∈ C1,

e−isπ β(z)+β(z)−1

2
(1 +O(n−2/3)), z ∈ C2,

(3.37) f2(z) =


eisπ

(
O(n−2/3) + β(z)−β(z)−1

−2i
(1 +O(n−2/3))

)
, z ∈ C1,

e−isπ
(
O(n−2/3) + β(z)−β(z)−1

−2i
(1 +O(n−2/3))

)
, z ∈ C2.

Note that f1(z), f2(z), and their derivatives are bounded on C1 ∪ C2.

So far we only used the fact that the contours C1 and C2 satisfy the condi-

tions (3.30). Now we make a more specific choice of the contours as follows (see

Figure 3.2). For a small fixed ε > 0 to be chosen in Lemma III.7, set

(3.38) Σ = {u+ iv : −ε ≤ u ≤ ε, v = n−1/3 + |u|/
√

3}.

Define C1,in to be the part of Σ such that |u| ≤ n−1/4:

(3.39) C1,in = {u+ iv : −n−1/4 ≤ u ≤ n−1/4, v = n−1/3 + |u|/
√

3}.

Define C1,out be the union of Σ \ C1,in and the horizontal line segments u + iv0,

|u| ≥ ε where v0 is the maximal imaginary value of Σ given by v0 = n−1/3 + ε/
√

2.

Set C1 = C1,in ∪ C1,out. Define C2 = C1. It is clear from the definition that the

contours satisfy the conditions (3.30).

Recall that (see (3.22)) M = 2
√
n+ 2−2/3n−1/6x where x ∈ R is fixed. We have
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Lemma III.7. There exist ε > 0, n0 ∈ N, and positive constants c1 and c2 such that

with the definition (3.38) of Σ with this ε, φ(z) defined in (3.41) satisfies

Re φ(z) ≤ c1n
−1, z ∈ C1,in ∪ C2,in,

Re φ(z) ≤ −c2n
−3/4, z ∈ C1,out ∪ C2,out,

(3.40)

for all n ≥ n0.

Proof. From the properties of g(z) and l, it is easy to show that g(z) − 1
2
z2 + 1

2
l =∫ √2

z

√
s2 − 2ds for z ∈ C \ (−∞,

√
2] (see e.g. (7.60) [32]). Thus,

(3.41) φ(z) =

∫ √2

z

√
s2 − 2ds± iM√

2n
z, z ∈ C±.

This implies that for φ±(u) is purely imaginary for z = u ∈ (−
√

2,
√

2) where φ±

denotes the boundary values from C± respectively. Hence for u ∈ (−
√

2,
√

2) and

v > 0, Reφ(u + iv) = Re (φ(u + iv)− φ+(u)). For u2 + v2 small enough and v > 0,

using the Taylor series about s = 0 and also (3.22), we have

Reφ(u+ iv) = −Re

(∫ u+iv

u

√
s2 − 2ds

)
− Mv√

2n

= − 1

23/2
Im

(∫ u+iv

u

(s2 +O(s4))ds

)
− x

27/6n2/3
v.

(3.42)

The integral involving O(s4) is O(|u2 + v2|5/2). On the other hand,

(3.43) − 1

23/2
Im

(∫ u+iv

u

s2ds

)
− xv

27/6n2/3
= − 1

22/33
(3u2v − v3)− xv

27/6n2/3
.

For z = u+ iv such that v = n−1/3 + |u|/
√

3 (see (3.38)), (3.43) equals

(3.44) n−1

(
−27/3

35/2
t3 − 21/3

3
t2 +

(21/2 − x)

27/631/2
t+

1

27/63
(21/2 − 3x)

)
,

by setting t = |u|n1/3. The polynomial in t is cubic and is of form f(t) = −a1t
3 −

a2t
2 + a3t+ a4 where a1, a2 > 0 and a3, a4 ∈ R. It is easy to check that this function

is concave down for positive t. Hence
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(i) supt≥0 f(t) is bounded above and

(ii) there are c > 0 and t0 > 0 such that f(t) ≤ −ct3 for t > t0.

Note that for z ∈ C1,in, t ∈ [0, n1/12]. Using (i), we find that (3.44) is bounded above

by a constant time n−1 for uniformly in z ∈ C1,in. Since the integral involving O(s4)

in (3.42) is O(n−5/4) when z ∈ C1,in, we find that there is a constant c1 > 0 such

that Reφ(z) ≤ c1n
−1 for z ∈ C1,in.

Now, for z = u + iv such that v = n−1/3 + |u|/
√

3 and |u| ≥ n−1/4, we have

t = |u|n1/3 ≥ n1/12 and hence from (ii), (3.44) is bounded above by −ct3n−1 = −c|u|3

for all large enough n. On the other hand, for such z, the integral involving O(s4)

in (3.42) is O(|z|5) = O(|u|5). Hence Reφ(z) ≤ −c|u|3 + O(|u|5) for such z. Now

if we take ε > 0 small enough, then there is c2 > 0 such that Reφ(z) ≤ −c2|u|3 for

|u| ≤ ε. Combining this, we find that there exist ε > 0, n0 ∈ N, and c2 > 0 such

that for Σ with this ε, we have Reφ(z) ≤ −c2|u|3 for z = u + iv ∈ Σ \ C1,in. Since

|u| ≥ n−1/4 for such z, we find Reφ(z) ≤ −c2n
−3/4 for z ∈ Σ \ C1,in.

We now fix ε as above and consider the horizontal part of C1,out. Note that

from (3.41), for fixed v0 > 0,

∂

∂u
Reφ(u+ iv0) = Reφ′(u+ iv0) = −Re

√
(u+ iv0)2 − 2.(3.45)

It is straightforward to check that this is < 0 for u > 0 and > 0 for u < 0. Hence the

value of Reφ(z) for z on the horizontal part of C1,out is the largest at the end which are

the intersection points of the horizontal segments and Σ. Since Reφ(z) ≤ −c2n
−3/4

for z ∈ Σ \ C1,in, we find that the same bound holds for all z on the horizontal

segments of C1,out. Therefore, we obtain Re φ(z) ≤ −c2n
−3/4 for all z ∈ C1,out.

The estimates on C2 follows from the estimates on C1 due to the symmetry of φ

about the real axis.
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Inserting the estimates in Lemma III.7 to the formula (3.34) and using the fact

that fj(z), j = 1, 2, and their derivatives are bounded on C1 ∪ C2 (see (3.36)

and (3.36)), we find that

(3.46) Ks(z, w) ≤ O(e−c2n
1/4

), if one of z or w is in C1,out ∪ C2,out.

We now analyze the kernel Ks(z, w) when z, w ∈ C1,in ∪ C2,in. We first scale the

kernel. Set

(3.47) K̂s(ξ, η) := 2πi · i21/6n−1/3Ks(i2
1/6n−1/3ξ, i21/6n−1/3η).

We also set

Σ
(n)
1 :=

{
u+ iv : u = 2−1/6 + 3−1/2|v|, −2−1/6n1/12 ≤ v ≤ 2−1/6n1/12

}
.(3.48)

This contour is oriented from top to bottom. Note that if ζ ∈ Σ
(n)
1 , then

(3.49) z = i21/6n−1/3ζ ∈ C1,in.

We also set Σ
(n)
2 = {−ξ : ξ ∈ Σ

(n)
1 } with the orientation from top to bottom. Then

(3.50) det(1 +Ks)L2(C1,in∪C2,in,dz) = det(1 + K̂s)L2(Σ
(n)
1 ∪Σ

(n)
2 , dζ

2πi
)
.

From (3.41),

(3.51) φ(z) =


πi
2

+
(
M−2

√
n√

2n

)
iz + 2−3/23−1iz3 +O(z5), z ∈ C1,in,

−πi
2
−
(
M−2

√
n√

2n

)
iz − 2−3/23−1iz3 +O(z5), z ∈ C2,in.

This implies that, using (3.41) and |z| = O(n−1/4) for z ∈ C1,in ∪ C2,in,

(3.52) nφ(i21/6n−1/3ζ) =


nπi
2

+mx(ζ) +O(n−1/4), ζ ∈ Σ
(n)
1 ,

−nπi
2
−mx(ζ) +O(n−1/4), ζ ∈ Σ

(n)
2 ,
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where

(3.53) mx(ζ) := −1

2
xζ +

1

6
ζ3, ζ ∈ C.

It is also easy to check from the definition (3.26) that

(3.54) β(i2
1
6n−

1
3 ζ) =


e
iπ
4

(
1− i2− 4

3n−
1
3 ζ +O(n−

1
2 )
)
, ζ ∈ Σ

(n)
1 ,

e
−iπ

4

(
1− i2− 4

3n−
1
3 ζ +O(n−

1
2 )
)
, ζ ∈ Σ

(n)
2 .

Using these we now evaluate (3.47). Set

(3.55) z = i21/6n−1/3ξ, w = i21/6n−1/3η.

We consider two cases separately: (a) z, w ∈ C1,in or z, w ∈ C2,in, and (b) z ∈

C1,in, w ∈ C2,in, or z ∈ C2,in, w ∈ C1,in. From (3.54),

β(z)− β(w)

z − w
= O(1) for case (a),(3.56)

and

β(z)− β(w)

z − w
= ±n1/3 25/6 sin π

4

ξ − η
(1 +O(n−

1
4 )) for case (b).(3.57)

Here the sign is + when z ∈ C1,in, w ∈ C2,in and − when z ∈ C2,in, w ∈ C1,in. We

also note that using (3.54), for z ∈ C1,in ∪ C2,in the asymptotic formula (3.37) can

be expressed as

(3.58) f2(z) =


eisπ β(z)−β(z)−1

−2i

(
1 +O(n−5/12)

)
, z ∈ C1,in,

e−isπ β(z)−β(z)−1

−2i

(
1 +O(n−5/12)

)
, z ∈ C2,in.

Thus, (3.36), (3.54), and (3.57), implies that for case (b),

f1(z)f2(w)− f1(z)f2(w)

−2πi(z − w)
=− (β(z)−1 + β(w)−1)

β(z)− β(w)

4π(z − w)

(
1 +O(n−5/12)

)
=∓ n1/3 cos(π

4
) sin(π

4
)

21/6π(ξ − η)
(1 +O(n−

1
4 )).

(3.59)
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Inserting this and (3.52) into (3.34) (recall (3.47)), we find that

(3.60) K̂s(ξ, η) = ±e
±(mx(ξ)−mx(η))

ξ − η
(1 +O(n−1/4)),

for case (b). A similar calculation using (3.56) instead of (3.57) implies that K̂s(ξ, η) =

O(n−1/3) for case (a).

The above calculations imply that K̂s converges to the operator given by the

leading term in (3.60) or 0 depending on whether ξ and η are on different limiting

contours or on the same limiting contours. From this structure, we find that K̂s

converges to
( 0 K

(∞)
12

K
(∞)
21 0

)
on L2(Σ

(∞)
1 , dζ

2πi
) ⊕ L2(Σ

(∞)
2 , dζ

2πi
) in the sense of pointwise

limit of the kernel where

(3.61) K
(∞)
12 (ξ, η) =

emx(ξ)−mx(η)

ξ − η
, K

(∞)
21 (ξ, η) = −e

−(mx(ξ)−mx(η))

ξ − η
,

and Σ
(∞)
1 is a simple contour from eiπ/3∞ to e−iπ/3∞ staying in the right half plane,

and Σ
(∞)
2 = −Σ

(∞)
1 from e2iπ/3∞ to e−2iπ/3∞. Note that the limiting kernel does not

depend on s.

In order to ensure that the Fredholm determinant also converges to the Fredholm

determinant of the limiting operator, we need additional estimates for the derivatives

to establish the convergence in trace norm. It is not difficult to check that the formal

derivatives of the limiting operators indeed yields the correct limits of the derivatives

of the kernel. We do not provide the details of these estimates since the arguments are

similar and the calculation follows the standard argument (see [78, Proof of Theorem

3] for an example). Then we obtain

(3.62) lim
n→∞

det
(
1 + K̂s

)∣∣∣
L2(Σ

(n)
1 ∪Σ

(n)
2 , dζ

2πi
)

= det
(
1−K(∞)

x

)∣∣
L2(Σ

(∞)
1 , dζ

2πi
)
,

where K
(∞)
x = K

(∞)
12 K

(∞)
21 of which the kernel is

(3.63) K(∞)
x (ξ, η) := emx(ξ)+mx(η)

∫
Σ

(∞)
2

e−2mx(ζ)

(ξ − ζ)(η − ζ)

dζ

2πii
.
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The determinant det(1−K(∞)
x ) equals the Fredholm determinant of the Airy operator.

Indeed, this determinant is a conjugated version of the determinant in the paper

[78] on ASEP. If we denote the operator in [78, Equation (33)] by Ls(η, η
′), then

K
(∞)
x (ξ, η) = emx(ξ)Lx(ξ, η)e−mx(η). It was shown in page 153 in [78] that det(1+Ls) =

FGUE(s).

Now, since limn→∞ Ps(M) = limn→∞ det(1+K)L2(C+∪C−) by (3.46), (3.50) and (3.62)

implies that Ps(2
√
n+ 2−

2
3n−

1
6x)→ FGUE(x) for all s. All the estimates are uniform

in s ∈ [0, 1] and we obtain P
(
Wn < 2

√
n+ 2−2/3n−1/6x

)
=
∫ 1

0
Ps(M)ds→ FGUE(x).

This proves Theorem III.2.

3.4 Continuous-time Symmetric Simple Random Walks

Let Y (t) be a continuous-time symmetric simple random walk, which is defined as

follows. The walker initially is at a site of Z. After an exponential waiting time with

parameter 1, the walker makes a jump to one of his neighboring site on Z with equal

probability. It is a direct to obtain the transition probability pt(x, y) = pt(y − x)

where

(3.64) pt(k) = e−t
∑
n∈Z

(t/2)2n+k

n!(n+ k)!
, k ∈ Z.

where 1
k!

:= 0 for k < 0 by definition.

Y (t) can also be described as the symmetric oscillatory Poisson process [68] or

the symmetrized Poisson process [54], which is defined to be the difference of two

independent rate 1/2 Poisson processes. It is easy to see that this difference has the

same transition probability as (3.64).

Let Yi(t) be independent copies of Y and set Xi(t) = Yi(t)+i, i = 0, 1, 2, · · · , n−1.

Also set X(t) := (X0(t), X1(t), · · · , Xn−1(t)). Then X(0) = (0, 1, · · · , n− 1). We

condition on the event that (a) X(T ) = X(0) and (b) X0(t) < X1(t) < · · · < Xn−1(t)
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for all t ∈ [0, T ]. See, for example, [2]. We use the notation P to denote this

conditional probability.

Define the ‘width’ as

(3.65) Wn(T ) = sup
t∈[0,T ]

(Xn−1(t)−X0(t)).

The analogue of Proposition III.1 is the following. The proof is given at the end of

this section.

Proposition III.8. For non-intersecting continuous-time symmetric simple random

walks,

(3.66) P(Wn(T ) < M) =
1

Tn(f)

∮
|s|=1

Tn(M−1f,DM,s)
ds

2πis
, f(z) = e

T
2

(z+z−1),

and DM,s = {z ∈ C : zM = s}.

The limit theorem is:

Theorem III.9. For each x ∈ R,

(3.67) lim
min{n,T}→∞

P
(
Wn(T )− µ(n, T )

σ(n, T )
≤ x

)
= FGUE(x)

where

(3.68) µ(n, T ) :=


2
√
nT , n < T,

n+ T, n ≥ T,

and

(3.69) σ(n, T ) :=


2−2/3T 1/3

(√
n
T

+
√

T
n

)1/3
, n < T,

2−1/3T 1/3, n ≥ T.
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Note that due to the initial condition and the fact that at most one of Xj’s moves

with probability 1 at any given time, if Xi is to move downward at time t, it is

necessary that X0, · · · , Xi−1 should have moved downward at least once during the

time interval [0, t). Thus, if T is small compared to n, then only a few bottom walkers

can move downard (and similarly, only a few top walkers can move upward), and

hence the middle walkers are ‘frozen’(See Figure 3.3). On the other hand, if T is

large compared to n, then there is no frozen region. The above result shows that the

transition occurs when T = n at which point the scalings (3.68) and (3.69) change.

Figure 3.3: Frozen region when T < n

Using Theorem II.6, Theorem III.9 can be obtained following the similar analysis

as in the subsection 3.3 once we have the asymptotics of the (continuous) orthonor-

mal polynomials with respect to the measure e
T
2

(z+z−1) dz
2πiz

on the unit circle. The

asymptotics of these particular orthonormal polynomials were studied in [9] and [8]

using the Deift-Zhou steepest-descent analysis of Riemann-Hilbert problems. In or-

der to be able to control the operator (2.29), the estimates on the error terms in

the asymptotics need to be improved. It is not difficult to achieve such estimates by

keeping track of the error terms more carefully in the analysis of [9] and [8]. We do

not provide any details. Instead we only comment that the difference of the scalings

for n < T and n > T is natural from the Riemann-Hilbert analysis of the orthonor-

mal polynomials. If we consider the orthonormal polynomial of degree n, pn(z), with
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weight e
T
2

(z+z−1), the support of the equilibrium measure changes from the full circle

when n
T
> 1 to an arc when n

T
< 1. The “gap” in the support starts to appear at

the point z = −1 when n = T and grows as n
T

decreases. This results in different

asymptotic formulas of the orthonormal polynomials in two different regimes of pa-

rameters. However, we point out that the main contribution to the kernel (2.29)

turns out to come from the other point on the circle, namely z = 1.

For technical reasons, the Riemann-Hilbert analysis is done separately for the

following four overlapping regimes of the parameters: (I) n ≥ T + C1T
1/3, (II)

T − C2T
1/3 ≤ n ≤ T + C3T

1/3, (III) c1T ≤ n ≤ T − C4T
1/3, (IV) n ≤ c2T where

0 < ck < 1 and Ck > 0.

Here we only indicate how the leading order calculation leads to the GUE Tracy-

Widom distribution for the case (I). We take

(3.70) M = n+ T + 2−1/3T 1/3x.

Let

(3.71) C = Cout ∪ Cin, γM(z) =


zM − s, z ∈ Cout,

−zM + s, z ∈ Cin,

where Cout = {z||z| = 1 + ε} and Cin = {z||z| = 1− ε} for some constant ε > 0. Set

(3.72) ρ(z) =


M, z ∈ Cout,

0, z ∈ Cin,

which satisfies (2.40). Let pn(z), p̃n(z) be the orthonormal polynomial with respect

to M−1fρ dz
2πiz

on C and κn, κ̃n be their leading coefficient, see (2.10). Note that f is

analytic, these polynomials are exactly the orthogonal polynomials with respect to

f(z) dz
2πiz

on the unit circle Σ. As a result, we have p̃n(z) = pn(z).
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By Theorem II.6, we have

(3.73)
Tn(M−1f,DM,s)

Tn(f)
= det(1 +K)

where det(1+K) is defined in (2.28) with kernel defined in (2.29) with M−1f instead

of f .

For case (I), the Riemann-Hilbert analysis implies that

(3.74) κ−1
n pn(z) ≈


zne−

T
2
z−1
, |z| > 1,

o(e−
T
2
z), |z| < 1,

and

(3.75) κnp
∗
n(z) ≈


o(zne−

T
2
z−1

), |z| > 1,

e−
T
2
z, |z| < 1.

Here these asymptotics can be made uniform for |z−1| ≥ O(T−1/3). In the following,

we always assume that z and w satisfy this condition even if we do not state it

explicitly. The above estimates imply

(zw)−n/2
pn(w)p∗n(z)− pn(z)p∗n(w)

1− zw−1
≈


−zn/2 e

−T2 (z−1+w)

1−zw−1 w−n/2, |z| > 1, |w| < 1,

z−n/2 e
−T2 (z+w−1)

1−zw−1 wn/2, |z| < 1, |w| > 1.

(3.76)

The kernel is of smaller order than the above when |z| < 1, |w| < 1 or |z| > 1, |w| > 1.

We also have

(3.77) v(z) :=


Ms
zM−s ≈Msz−M , |z| > 1,

MzM

s−zM ≈
M
s
zM , |z| < 1.

Here again the approximation is uniform for |z − 1| ≥ O(T−1/3). Hence inserting

1
M
f(z) = 1

M
e
T
2

(z+z−1) to (2.29), we find that the leading order term of the kernel is

(3.78) K(z, w) ≈ ±e
±(φ(w)−φ(z))

1− zw−1
, φ(z) :=

T

4
(z − z−1)− M − n

2
log z
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where the sign is − is when |z| > 1, |w| < 1 and is + when |z| < 1, |w| > 1. Note

that

(3.79) φ(z) = −T
1/3

24/3
x(z − 1) +

T

12
(z − 1)3 +O(T 1/3(z − 1)2) +O(T (z − 1)4).

Hence for ζ = O(1),

(3.80) φ(1 +
21/3

T 1/3
ζ) = −1

2
xζ +

1

6
ζ3 +O(T−1/3).

After the scaling z = 1+ 21/3

T 1/3 ζ and w = 1+ 21/3

T 1/3η, (3.78) converges to the leading term

of (3.61), except for the overall sign change which is due to the reverse orientation

of the contour. Thus we end up with the same limit (3.62) which is FGUE(x).

3.5 Discrete-time Symmetric Simple Random Walks

Let X0(k), · · · , Xn−1(k), k = 0, 1, · · · , n − 1, be independent discrete-time sym-

metric simple random walks. Set X(k) := (X0(k), X1(k), · · · , Xn−1(k)). We take the

initial condition as

(3.81) X(0) = (0, 2, · · · , 2n− 2).

and consider the process conditional of the event that (a) X(2T ) = X(0) and (b)

X0(k) < X1(k) < · · · < Xn−1(k) for all k = 0, 1, · · · , 2T . The non-intersecting

discrete-time simple random walks can also be interpreted as random tiling of a

hexagon and were studied in many papers. See, for example, [26, 52, 12, 23]. The

notation P denotes this conditional probability. Define the width

(3.82) Wn(2T ) := max
k=0,1,··· ,2T

(
Xn−1(k)−X0(k)

)
as before.
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Proposition III.10. For non-intersecting discrete-time symmetric simple random

walks,

(3.83)

P(Wn(2T ) < 2M) =
1

Tn(f)

∮
|s|=1

Tn(M−1f,DM,s)
ds

2πis
, f(z) = z−T (1 + z)2T ,

and DM,s = {z ∈ C : zM = s}.

The fluctuations are again given by F . Note that 2n ≤ Wn(2T ) ≤ 2n+ 2T for all

n and T .

Theorem III.11. Fix γ > 0 and 0 < β < 2. Then for n = [γT β],

(3.84) lim
T→∞

P

(
Wn(2T )− 2

√
n2 + 2nT

(n2 + 2nT )−
1
6T

2
3

≤ x

)
= FGUE(x).

for each x ∈ R.

Note that the parameter (n2 + 2nT )−
1
6T

2
3 → ∞ as T → ∞ when β < 2. This

parameter is O(1) when β = 2. Indeed one can show that when β > 2,

(3.85) lim
T→∞

P(Wn(2T ) = 2n+ 2T ) = 1.

The proofs of the proposition and the theorem are similar to those for the continuous-

time symmetric simple random walks and we omit them.



CHAPTER IV

Asymptotics of the Ratio of Discrete Toeplitz/Hankel
Determinant and its Continuous Counterpart, the Complex

Weight Case

4.1 Introduction and Results

In this chapter we consider the case of a discrete Toeplitz determinant Tn(f,D)

where f(z) is a specific complex function (4.4) on D. We compute the asymptotics of

the ratio of this discrete Toeplitz determinant and its continuous counterpart Tn(f).

It turns out that one can still apply Theorem II.6 here, but the asymptotic analysis

of the Fredholm determinant is much more complicated than that for the cases of

real symbols. We develop some new techniques to overcome this complication, which

are believed to work for more than this specific complex symbol.

This discrete Toeplitz determinant arises in the width of nonintersecting Poisson

process, as described below.

Let X(t) = (X0(t), · · · , Xn−1(t)) be n independent Poisson processes with param-

eter 1. The transition probability of Xi(t)(i = 0, 1, · · · , n− 1) is given by

(4.1) pt(k) = e−t
tk

k!
, k = 0, 1, · · · .

DefineDn := {x0 < x1 < · · · < xn−1}. We condition that (a)X(0) = (0, 1, · · · , n−1),

X(T ) = (a, a+ 1, · · · , a+n− 1) where a is an integer parameter, and (b) X(t) ∈ Dn

48
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for all t ∈ (0, T ). Denote by P the conditional probability. Define the width of

X(t) (0 ≤ t ≤ T )

(4.2) Wn(T ) := sup
0≤t≤T

(Xn−1(t)−X0(t)).

Similarly to the width of the three nonintersecting processes discussed in the

previous chapter, we have the following discrete Toeplitz determinant representation

of the width distribution

Proposition IV.1. For nonintersecting Poisson processes defined above, the distri-

bution of the width is given by

(4.3) P (Wn(T ) ≤M) =

∫
|s|=r

Tn(M−1f,DM,s)

Tn(f)

ds

2πis

where r > 0 is arbitrary, and

(4.4) f(z) := eTzz−a,

and

(4.5) DM,s = {z|zM = sM}.

Remark IV.2. From the formula (4.3), it is easy to check that the distribution of

Wn(T ) is independent of T .

The main goal of this chapter is to find the asymptotics of (4.3). By using Theorem

II.6 and rewriting the kernel of the Fredholm determinant, one can find the following

asymptotic result of (4.3).

Theorem IV.3. Suppose a = (γ + 1)n for some constant γ > 0. Then for any fixed

x ∈ R

(4.6) lim
n→∞

P
(
Wn(T ) ≤ 2

√
γ + 1n+ xγ2/3(γ + 1)−1/6n1/3

)
= FGUE(x).
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4.2 Proof of Theorem IV.3

By the Karlin-McGregor argument, it is obvious that Tn(f) is exactly the proba-

bility that n independent Poission processes starting from X(0) = (0, 1, · · · , n − 1)

and ending at X(T ) = (a, a+ 1, · · · , a+ n− 1) are nonintersecting. Therefore

(4.7) Tn(f) > 0, n = 1, 2, · · · ,

and the orthogonal polynomials pk(z) = γkz
k + · · · , p̃k(z) = γ̃kz

k with respect to the

measure f(z) dz
2πiz

(4.8)

∮
0

pk(z)p̃j(z
−1)f(z)

dz

2πiz
= δk(j), k, j = 0, 1, · · · ,

exist and are unique up to a constant factor.

Now define

(4.9) γM(z) := zM − sM .

By using a residue computation, it is a direct to check

(4.10)

∫
Σr+∪Σr−

γ′M(z)

2πiγM(z)
zkM−1f(z)dz =

∑
z∈DM,s

zkM−1f(z),

where Σr+ is a counterclockwise oriented circle centered at the origin and with radius

greater than r, and Σr− is a clockwise oriented circle centered at the origin and with

radius smaller than r. By taking

(4.11) ρ(z) =


M, |z| > r,

0, |z| < r,

and applying the Theorem II.6, one immediately obtain

Proposition IV.4.

(4.12) Tn(M−1f,DM,f ) = Tn(f) det(I +Ks)
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where det(I +Ks) is a Fredholm determinant defined by

(4.13) det(I +Ks) = 1 +
∞∑
k=1

1

k!

∫
(Σr+∪Σr−)k

det(Ks(zi, zj))
k−1
i,j=0

k−1∏
j=0

dzj
2πizj

and the kernel

(4.14)

Ks(z, w) =
√
vs(z)vs(w)f(z)f(w)

(z/w)
n
2 pn(w)p̃n(z−1)− (w/z)

n
2 pn(z)p̃n(w−1)

1− zw−1
.

Here

(4.15) vs(z) :=


zM

sM−zM , |z| < r,

sM

zM−sM , |z| > r,

and pj(z), p̃j(z) are orthogonal polynomials with respect to f(z) dz
2πiz

on the unit circle

Σ.

The natural idea is to use the asymptotics of the orthogonal polynomials to find

the asymptotics of the kernel (4.14) and then the asymptotics of the Fredholm de-

terminant (4.13), as what we did in the previous cases. However, it turns out the

idea does not work for this case as explained below.

It is a standard process to find the leading terms of pn(z) and p̃n(z) as n tends

to infinity by using Deift-Zhou steepest descent method. See subsection 4.2.1 for an

illustration (except for the last step of taking n→∞). One can show the following

(4.16) log(pn(z)) = ng(z) +O(1), log(znp̃n(z−1)) = ng(z) +O(1),

where g(z) is the so-called g-function of the corresponding Riemann-Hilbert problem.

Therefore heuristically we have

(4.17) Ks(z, w) = e
n
2

(φ(z)+n−1 log vs(z))+
n
2

(φ(w)+n−1 log vs(w))+O(1),

where φ(z) = g(z)− 1
2

log z + 1
2

log f(z).
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φ(z) has a property that it has a jump on a specific contour, which we denote by Γ0.

More explicitly, <(φ) reaches its minimum at Γ0 near the neighborhood of Γ0. φ(z)

has no other jump. On the other hand, < log vs(z) has a jump on Σr := {z||z| = r},

where it reaches its maximum. In our case when f(z) = eTzz−a, the most important

information of the two contours Γ0 and Σr is that they are neither (partly) coincided

nor tangent to each other.

Now we consider the asymptotics of Ks(z, w) when M = 2
√
an + O(n1/3) and

a = O(n). Then it turns out the main part of φ+ n−1 log vs(z) has a double critical

point zc. Moreover, zc is neither on Γ0 nor on Σr. In order to control the kernel, one

need to deform both contours Σr+ and Σr− such that they are close to zc. However,

it is impossible since the kernel has poles on Σr which blocks the deformation of Σr+

and Σr−!

Remark IV.5. In the previous cases we discussed in Chapter II, f = enV is analytic in

C\{0} and is positive on Σ. Under these two conditions, one can show Γ0, the jump

contour of the g-function, is the support of the equilibrium measure µ(z) on Σ which

minimizes the energy function (2.22). Therefore the leading term of the Fredholm

kernel K only contains jumps on Σ. On the other hand, the double critical point

of this leading term appears exactly on Σ. These two facts are utilized to deform C

close to the double critical point.

The discussion above tells us that one cannot directly use the asymptotics of the

Fredholm kernel Ks to find the asymptotics of the Fredholm determinant (4.13). We

need further techniques to solve this problem.

In the next subsection we find a way to rewrite the Fredholm determinant so

that the new Fredholm kernel is effective for asymptotic analysis. The idea is to

decompose the Christoffel-Darboux kernel part of Ks by using the corresponding
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r

Figure 4.1: The original choice of Σout

and Σin

r

ZR

ZR

Figure 4.2: Changing the integral con-
tour Σr+ to Σout

Riemann-Hilbert problems, and remove the singularities of the vs part of Ks by a

residue computation on the Chiristoffel-Darboux kernel part.

4.2.1 An Identity on the Fredholm Determinant det(I +Ks)

Step 1: Change the Integral Contour

Let Σin and Σout be two contours which satisfy the conditions (C1) and (C2)

below.

(C1) Σin is a simple closed contour with clockwise orientation, which encloses the

origin and is inside of Σr.

(C2) Σout is a simple and unbounded contour outside of Σr which satisfies

(4.18) <
(
z +

n− a−M + λ

T
log z

)
= some negative constant

when z ∈ Σout becomes sufficiently large. Here λ ≥ 0 is a parameter. The orientation

of Σout is from the lower half plane to the upper half plane. It is easy to see that

Σout ∩ {z||z| > R} is symmetric about the real axis when R tends to infinity by the

condition (C2). See Figure 4.1.

Proposition IV.6. Suppose C = Σin∪Σout satisfies conditions (C1) and (C2). Then
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the Fredholm determinant (4.13) can be rewritten as

(4.19) det(1 +Ks) = 1 +
∞∑
k=1

1

k!

∫
Ck

det(Ks(zi, zj))
k−1
i,j=0

k−1∏
j=0

dzj
2πizj

Proof. By the Christoffel-Darboux identity (2.11), it is sufficient to prove

(4.20)

∫
Σr+∪Σr−

pi(z)p̃i(z
−1)f(z)vs(z)

dz

2πiz
=

∫
C

pi(z)p̃i(z
−1)f(z)vs(z)

dz

2πiz

for all i = 0, 1, · · · , n− 1, which is equivalent to

(4.21)

∫
Σr+∪Σr−

zif(z)vs(z)
dz

2πiz
=

∫
C

zif(z)vs(z)
dz

2πiz

for all i = −n,−n+ 1, · · · , n− 2. Since Σin and Σr− are both simple closed contours

enclosing the origin and lying inside of Σr, it is sufficient to prove

(4.22)

∫
Σr+

zif(z)vs(z)dz =

∫
Σout

zif(z)vs(z)dz

for all −n ≤ i ≤ n− 2.

Set DR := {z||z| ≤ R}. The condition (C2) of Σout implies that Σout intersects

with ∂DR at exact two points if R is large enough, where ∂DR is the boundary of

DR, i.e., the circle centered at the origin with radius R. Denote the intersection

point in the upper half plane by zR = eiθR . Then the second point is zR = ei(2π−θR).

See Figure 4.2. Therefore

∫
Σr+

zif(z)vs(z)dz =

∫
|z|=R

zif(z)vs(z)dz

=

∫
|z|=R,arg z∈(θR,2π−θR)

zif(z)vs(z)dz +

∫
Σout∩DR

zif(z)vs(z)dz.

(4.23)

Note that the condition (C2) on Σout implies

(4.24) |zif(z)vs(z)| ≤ |z|−2−λ
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for all |z| = R and arg z ∈ (θR, 2π − θR). By taking R → ∞ in (4.23), the first

term becomes 0 and the second term becomes
∫

Σout
zif(z)vs(z)dz. (4.22) follows

immediately.

Remark IV.7. Notice that Ks is a finite rank operator, and the infinite sum in (4.19)

is finite. In fact, det(Ks(zi, zj))
k−1
i,j=0 = 0 for k ≥ n.

Remark IV.8. The definition (4.19) can be interpreted as the Fredholm determinant

of an operator on a Hilbert space as follows.

Let L2(C, |dz|) be the Hilbert space of function h : C→ C such that
∫
C
|h(z)|2|dz| <

∞. Now, let Ks : L2(C, |dz|)→ L2(C, |dz|) be the integral operator with kernel

(4.25)
Ks(z, w)

2πiw

dw

|dw|
, z, w ∈ S.

Then

(4.26) (Ksh)(z) =

∫
C

Ks(z, w)h(w)
dw

2πiw
, h ∈ L2(C, |dz|)

and

(4.27)

∫
Ck

det(Ks(zi, zj))k−1
i,j=0

k−1∏
j=0

|dzj| =
∫
Ck

det(Ks(zi, zj))
k−1
i,j=0

k−1∏
j=0

dzj
2πizj

.

Therefore (4.19) equals the Fredholm determinant det(I + Ks) of the operator Ks

once we show that Ks is a trace class.

First, we show that Ks is a bounded operator. Indeed by the choice of Σout,

(4.28)
∣∣∣√vs(z)vs(w)f(z)f(w)(w/z)

n
2 pi(z)p̃i(w

−1)w−1
∣∣∣2 ≤ O(|zw|−2−λ)

for all 0 ≤ i ≤ n− 1 as z, w →∞. This implies

(4.29)

∫
C

∫
C

∣∣∣√vs(z)vs(w)f(z)f(w)(w/z)
N
2 pi(z)p̃i(w

−1)w−1
∣∣∣2 |dw||dz| <∞
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for each i. Therefore

(4.30)

∫
C

∫
C

|Ks(z, w)|2|dw||dz| <∞,

which implies that Ks is bounded and also Hilbert-Schmidt.

Second, since Ks is a finite rank operator, it is a trace class.

Notation IV.9. For convenience, we say that Ks is a trace class or Hilbert-Schmidt

operator in L2(C, dz
2πiz

) if the corresponding operator Ks defined in (4.26) is trace

class or Hilbert-Schmidt in L2(C, |dz|), respectively.

Step 2: Rewrite the Kernel by a Riemann-Hilbert Problem

In order to simplify our notations, we omit the index s in Ks and vs unless it is

necessary.

We suppose all the parameters N, a(a > N) and T are fixed. Therefore the

notations O(1), O(|z|k) are all with respect to the z → 0 or z → ∞ in the complex

plane, (k ∈ Z).

First consider the following Riemann-Hilbert problem.

Riemann-Hilbert Problem IV.10. Find a 2× 2 matrix Y (z) satisfying

(a) Y (z) is analytic on C\Σ and is continuous up to the boundary Σ, where Σ

denotes the unit circle,

(b) Y (z) = (I +O(z−1)znσ3 as z →∞,

(c) On Σ, Y+(z) = Y−(z)vY (z) where

(4.31) vY (z) =

 1 z−nf(z)

0 1

 .

Here f(z) = eTzz−a is defined in (4.4).
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The solution to this Riemann-Hilbert problem exists and is unique. It is given by

(see Section 3, [34])

(4.32) Y (z) =

 κ−1
n pn(z),

∫
Σ
κ−1
n pn(ξ)f(ξ)

ξ−z
dξ

2πiξn

−κn−1z
n−1p̃n−1(z−1),

∫
Σ
−κn−1p̃n−1(ξ−1)f(ξ)

ξ−z
dξ

2πiξ

 .

Therefore we have

(4.33) pn(z) = κnY11(z), Y12(0) = κ−1
n κ̃−1

n .

Similarly consider the following Riemann-Hilbert problem

Riemann-Hilbert Problem IV.11. Find a 2× 2 matrix Y (z) satisfying

(a) Ỹ (z) is analytic on C\Σ and is continuous up to the boundary Σ, where Σ is

the unit circle,

(b) Ỹ (z) = (I +O(z−1)znσ3 as z →∞,

(c) On Σ, Ỹ+(z) = Ỹ−(z)vỸ (z) where

(4.34) vỸ (z) =

 1 z−nf(z−1)

0 1

 .

The unique solution is given by

(4.35) Ỹ (z) =

 κ̃−1
n p̃n(z),

∫
Σ
κ̃−1
n p̃n(ξ)f(ξ−1)

ξ−z
dξ

2πiξn

−κ̃n−1z
n−1pn−1(z−1),

∫
Σ
−κ̃n−1pn−1(ξ−1)f(ξ−1)

ξ−z
dξ

2πiξ

 .

Especially we have

(4.36) p̃n(z) = κ̃nỸ11(z).

Note that the two Riemann-Hilbert problems are related. It is easy to check that

they satisfy the following relation

(4.37) Ỹ (z) = Y (0)−1Y (z−1)znσ3 .
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Hence we have

(4.38) Ỹ11(z) = (Y22(0)Y11(z−1)− Y12(0)Y21(z−1))zn.

By plugging in (4.33) and (4.36) into the kernel Ks (4.14), we have

(4.39)

Ks(z, w) =
√
vs(z)vs(w)f(z)f(w)

(z/w)n/2Y11(w)Ỹ11(z−1)− (w/z)n/2Y11(z)Ỹ11(w−1)

Y12(0)(1− zw−1)
.

Then we plug in (4.38) and obtain

Proposition IV.12. Let Y (z) be the unique solution to the Riemann-Hilbert problem

IV.10, then

(4.40) Ks(z, w) =
√
vs(z)vs(w)f(z)f(w)(zw)−n/2

Y11(z)Y21(w)− Y11(w)Y21(z)

1− zw−1
.

Remark IV.13. If we write Tn(M−1f,DM,s) and Tn(f) as the corresponded Hankel

determinants (−1)(n−1)(n−2)/2Hn(M−1z−n+1f,DM,s) and (−1)(n−1)(n−2)/2Hn(z−n+1f),

and apply Theorem II.7, we can arrive at the same Fredholm determinant with the

kernel (4.40).

Step 3: Deform the Riemann-Hilbert Problem and Further Rewrite the Fredholm
Determinant

Let

(4.41) ξ :=
a− n+ 2i

√
an

T
,

and Γ be a simple contour from ξ̄ to ξ which will be defined explicitly later. Here we

just require Γ does not intersect (−∞, 0].

Define the g-function of the Riemann-Hilbert problem IV.10 as following

(4.42) g(z) :=

∫ z

ξ

(
− T

2n
+
a+ n

2n

1

z
+
T

2n

√
(z − ξ)(z − ξ̄)

z

)
dz − l′,



59

where
√

(z − ξ)(z − ξ̄) is defined in such a way that it has the branch cut Γ and

behaves like z as z → ∞, and l′ is a constant determined later. We also require

the integral contour does not intersect Γ. Note that the integrand does not have

a pole at z = 0 due to the choice of ξ in (4.41). It is easy to check that g(z) is

a multi-valued “function” varying by multiples of 2πi, depending on the number

of times the integral curve travels around Γ. Therefore eng(z) is well-defined as a

single-valued function. Note that g′(z) − 1
z

= O(|z|−2) as z → ∞. Hence we have

eng(z)z−n = O(z−1) as z →∞.

Now we do the standard deformations (see [32] for example). Notice that the

choice of the jump contour in the Riemann-Hilbert problem IV.10 does not affect

the first column of Y (z), as long as it is a simple closed contour enclosing 0. Therefore

we can pick Γ ∪ Γ′ as the jump contour, where Γ′ is a simple curve from ξ to ξ̄ such

that Γ′ does not intersect [0,+∞). We will put other restrictions on Γ′ later. Define

(4.43) Q(z) := enlσ3/2Y (z)e−ng(z)σ3e−nlσ3/2,

where l is the constant satisfying

(4.44) ng(z)+ + ng−(z) + Tz − (a+ n) log z + nl = 0,

for all z ∈ Γ.

Then Q(z) solves the following

Riemann-Hilbert Problem IV.14. Find a 2× 2 matrix Q(z) satisfying

(a) Q(z) is analytic except on C\(Γ ∪ Γ′) and is continuous up to the boundary

Γ ∪ Γ′,

(b) Q(z) = I +O(z−1) as z →∞,
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(C) On the jump contour, Q+(z) = Q−(z)vQ(z) where

(4.45) vQ(z) =



 e2nφ−(z) 1

0 e2nφ+(z)

 , z ∈ Γ,

 1 e2nφ(z)

0 1

 , z ∈ Γ′,

where

(4.46) φ(z) :=

∫ z

ξ

T

2n

√
(z − ξ)(z − ξ̄)

z
dz = g(z) +

T

2n
z − n+ a

2n
log z +

l

2

with Γ as its branch cut. Here the integral contour cannot pass 0 or intersect Γ.

φ(z) is a multi-valued “function” varying by multiples of 2πi and

(4.47)

∮
0

T

2n

√
(z − ξ)(z − ξ̄)

z
dz =

(−a− n)πi

n
,

depending on the number of times the integral contour travels around Γ and the

origin. Therefore e2nφ is well defined as a single-valued function, and <(φ(z)) is

independent of the integral contour.

By symmetry we have

<(φ(ξ̄)) = <

(∫ ξ̄

ξ

T

2n

√
(z − ξ)(z − ξ̄)

z
dz

)

=
T

4n

∫ ξ̄

ξ

(√
(z − ξ)(z − ξ̄)

z
dz +

√
(z̄ − ξ)(z̄ − ξ̄)

z̄
dz̄

)

=
T

4n

∫ ξ̄

ξ

√
(z − ξ)(z − ξ̄)

z
dz +

T

4n

∫ ξ

ξ̄

√
(z − ξ)(z − ξ̄)

z
dz

= 0,

(4.48)

where the integral contour is chosen to be symmetric about the real axis and does

not intersect Γ.
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Furthermore, for any z ∈ C, we have

<(φ(z)) = <

(∫ z

ξ

T

2n

√
(z − ξ)(z − ξ̄)

z
dz

)

=
T

4n

∫ z

ξ

(√
(z − ξ)(z − ξ̄)

z
dz +

√
(z̄ − ξ)(z̄ − ξ̄)

z̄
dz̄

)

=
T

4n

∫ z̄

ξ̄

(√
(z̄ − ξ)(z̄ − ξ̄)

z̄
dz̄ +

√
(z − ξ)(z − ξ̄)

z
dz

)

= <

(∫ z̄

ξ̄

T

2n

√
(z − ξ)(z − ξ̄)

z
dz

)

= <(φ(z̄)).

(4.49)

Therefore <(φ(z)) is symmetric about the real axis.

By expanding φ′(z) at ∞, it is easy to see

(4.50) φ(z) =
T

2n
z − a− n

2n
log z +O(1)

as z → ∞. Also note that φ(z) = −T |ξ|
2n

log(z) + O(1) near 0, φ(z) = c(z − ξ)3/2 +

O(z − ξ)5/2 near ξ, where c is a nonzero constant which can be computed explicitly.

By a standard topological discussion on the quadratic differentials (see [63, 10] for

examples) one can show the set {z|<(φ(z)) = 0} is independent of the choice of Γ. It

consists of four segments with endpoints ξ or/and ξ̄, as shown in Figure 4.3. The two

bounded segments form a region which contains 0. Denote by Γ0 the finite segment

to the right of the origin, Γ1 the finite segment to the left of the origin, and Γ2 the

union of the other two infinite segments. Note that φ′(z) is nonzero on the real axis,

both Γ0 and Γ1 intersect R at exact one point.

Now we choose Γ = Γ0. Denote by O1, O2 and O3 the regions from left to right

which are divided by Γ,Γ1 and Γ2. See Figure 4.3. Then it is easy to see <(φ(z)) < 0

for all z ∈ O1, and <(φ(z)) > 0 for all z ∈ O2 ∪ O3.

We have more discussions about the properties of Γ, Γ1 and Γ2 later.
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Figure 4.3: The graph of Γ ∪ Γ1 ∪ Γ2 =
{z|<(φ(z)) = 0}

Figure 4.4: The jump contours of the
Riemann-Hilbert prob-
lem IV.15

Now come back to the Riemann-Hilbert problem IV.14. Choose Γ′ to be an open

contour from ξ to ξ̄ and which lies in O1. Then <(φ(z)) < 0 for all z ∈ Γ′.

Up to now all the deformations are standard. For the next step, instead of opening

two lenses close to Γ0 as usual, we use certain specific unbounded lenses going to

infinity. More explicitly, define three contours as following: Γin is a contour from ξ̄

to ξ̄ which lies in O2. We also require that 0 is to the right of Γin. The upper part

of Γout is a contour from ∞ to ξ which lies in O3 and also in the upper half plane.

Moreover, when z becomes large along Γout,

(4.51) <
(
φ(z)− M

4n
log z

)
= 0.

This contour exists since that <
(
φ(z)− M

4n
log z

)
is a monic function of <(z) in any

large enough circle |z| = R, and that < log(z) > 0 for all |z| > 1. We complete Γout

by making it symmetric about the real axis. See Figure 4.4.

The contours Γ′,Γin,Γ, and Γout divide the complex plane into four regions. We

denote by Q1,Q2,Q3, and Q4 the four regions from left to right. Note that our choice
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of Γin implies 0 ∈ Q3. We also denote Qr the region which is bounded by Γin ∪ Γout

and contains R+. Then Qr = Q3 ∪Q4 ∪ Γ.

We will showQr has a nice property that the solution matrix to the final Riemann-

Hilbert problem is analytic in Qr, see the Riemann-Hilbert problem IV.16. This

property allows us to compute the residues and cancel terms in the expansion of

Fredholm determinant det(1 + K) if Σin and Σout are chosen in Qr (see Proposi-

tion IV.17). Recall that Σout satisfies (4.18), which implies

(4.52) <
(
φ(z)− M − λ

2n
log z

)
= constant

as z → ∞ along Σout. Our choice of Γout make it possible to choose a contour Σout

in Qr if λ < M
2

. It is also possible to choose Σin in Qr since 0 ∈ Q3 ⊂ Qr. See

Figure 4.7 and its interpretation later.

Now we define

(4.53) S(z) :=



Q(z), z ∈ Q1 ∪Q2,

Q(z)

 1 0

−e−2nφ(z) 1

 , z ∈ Q3,

Q(z)

 1 0

e−2nφ(z) 1

 , z ∈ Q4.

Here, although φ(z) has a pole at z = 0, e−2nφ(z) is analytic at z = 0 by (4.46).

Therefore S is analytic in Q3.

S(z) solves the following Riemann-Hilbert problem:

Riemann-Hilbert Problem IV.15. Find a 2× 2 matrix S(z) satisfying

(a) S(z) is analytic on C\(Γ ∪ Γ′ ∪ Γin ∪ Γout) , and is continuous up to the

boundaries Γ ∪ Γ′ ∪ Γin ∪ Γout,
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(b) S(z) = I +O(z−1) as z →∞,

(C) On the jump contours, S+(z) = S−(z)vS(z) where

(4.54) vS(z) =



 1 0

e−2nφ(z) 1

 , z ∈ Γin ∪ Γout,

 0 1

−1 0

 , z ∈ Γ,

 1 e2nφ(z)

0 1

 , z ∈ Γ′.

Define

(4.55) R(z) := S(z)

 β+β−1

2
β−β−1

2i

β−β−1

−2i
β+β−1

2


−1

where β(z) =
(
z−ξ
z−ξ̄

)1/4

which has the branch cut Γ and β(z) = 1+O(z−1) as z →∞.

Then R(z) satisfies the following Riemann-Hilbert problem

Riemann-Hilbert Problem IV.16. Find a 2× 2 matrix R(z) satisfying

(a) R(z) is analytic on C\(Γ′ ∪Γin ∪Γout) and is continuous up to the boundaries

Γ′ ∪ Γin ∪ Γout,

(b) R(z) = I +O(z−1) as z →∞,

(C) On the jump contours, R+(z) = R−(z)vR(z) where

(4.56) vR(z) =


I + e−2nφ(z)E(z), Γin ∪ Γout,

I + e2nφ(z)E(z), z ∈ Γ′.
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Here E(z) is defined by

(4.57) E(z) :=




β−β−1

2i
β+β−1

2
−β−β−1

2i
β−β−1

2i

β+β−1

2
β+β−1

2
β+β−1

2
β−β−1

−2i

 , z ∈ Γin ∪ Γout,

 −
β+β−1

2
β−β−1

−2i
β+β−1

2
β+β−1

2

−β−β−1

−2i
β−β−1

−2i
β−β−1

−2i
β+β−1

2

 , z ∈ Γ′.

Note that R(z) is analytic in the region Qr. Moreover, by using the fact that

det(Y (z)) = 1 for all z ∈ C since det(Y (z)) is an entire function and goes to 1 at

∞, and the fact that our deformations do not change the determinant of the desired

matrices, we have det(R(z)) = det(S(z)) = det(Q(z)) = det(Y (z)) = 1 for all z ∈ C.

Hence we have

(4.58) R11(z)R22(z)−R12(z)R21(z) = 1

for all z ∈ C\(Γ′ ∪ Γin ∪ Γout). R(z) also has simple asymptotic behaviors as the

parameters go to infinity simultaneously: R(z) = I + O(n−1) for any fixed z in

C\(Γ′ ∪ Γin ∪ Γout). See the next subsection. We do not use this property in this

subsection since we suppose all the parameters are fixed.

Now we rewrite the Fredholm kernel (4.40) in terms of R(z). Assume the following

condition on Σin and Σout holds.

(C3) Σin and Σout are both in Qr.

By using (4.46), we have

(4.59) K(z, w) =
√
v(z)v(w)

F (z)G(w)− F (w)G(z)

1− zw−1
,

where F (z) := enφ(z)Y11(z)e−ng(z) andG(z) := enφ(z)Y21(z)e−ng(z)−nl for all z in C\(Γ∪
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Γ′). By tracking the relation between Y (z) and R(z) we have

(4.60) F (z) =



enφ(z)
(
R11(z)β+β−1

2
+R12(z)β−β

−1

−2i

)
+e−nφ(z)

(
R11(z)β−β

−1

2i
+R12(z)β+β−1

2

)
, z ∈ Q3,

enφ(z)
(
R11(z)β+β−1

2
+R12(z)β−β

−1

−2i

)
−e−nφ(z)

(
R11(z)β−β

−1

2i
+R12(z)β+β−1

2

)
, z ∈ Q4,

and

(4.61) G(z) =



enφ(z)
(
R21(z)β+β−1

2
+R22(z)β−β

−1

−2i

)
+e−nφ(z)

(
R21(z)β−β

−1

2i
+R22(z)β+β−1

2

)
, z ∈ Q3,

enφ(z)
(
R21(z)β+β−1

2
+R22(z)β−β

−1

−2i

)
−e−nφ(z)

(
R21(z)β−β

−1

2i
+R22(z)β+β−1

2

)
, z ∈ Q4.

Here we omit the case z ∈ Q1 ∪Q2 since Σin ∪ Σout lies in Qr = Q3 ∪Q4 ∪ Γ.

It is easy to check (from the definitions or the formulas above) that F (z) and G(z)

are both analytic in Qr\{0}. Each of them can be decomposed to the sum of two

functions which are also analytic in Qr\{0}. More precisely, F (z) = F0(z) + F1(z)

and G(z) = G0(z) + G1(z), where F0(z), G0(z) are analytic functions in Qr\{0}

defined by

(4.62) F0(z) =


e−nφ(z)

(
R11(z)β−β

−1

2i
+R12(z)β+β−1

2

)
, z ∈ Q3,

enφ(z)
(
R11(z)β+β−1

2
+R12(z)β−β

−1

−2i

)
, z ∈ Q4,

(4.63) G0(z) =


e−nφ(z)

(
R21(z)β−β

−1

2i
+R22(z)β+β−1

2

)
, z ∈ Q3,

enφ(z)
(
R21(z)β+β−1

2
+R22(z)β−β

−1

−2i

)
, z ∈ Q4,
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and F1(z), G1(z) are analytic functions in Qr\{0} defined by

(4.64) F1(z) =


enφ(z)

(
R11(z)β+β−1

2
+R12(z)β−β

−1

−2i

)
, z ∈ Q3,

−e−nφ(z)
(
R11(z)β−β

−1

2i
+R12(z)β+β−1

2

)
, z ∈ Q4,

(4.65) G1(z) =


enφ(z)

(
R21(z)β+β−1

2
+R22(z)β−β

−1

−2i

)
, z ∈ Q3,

−e−nφ(z)
(
R21(z)β−β

−1

2i
+R22(z)β+β−1

2

)
, z ∈ Q4.

There are three properties of Fi(z), Gi(z) (i = 0, 1) which turn out to be the key

to simplify the Fredholm determinant det(1 + K). Suppose Σin is a simple closed

contour in Qr which encloses 0, and Σout is a simple contour in Qr which separates

0 and +∞. We also assume
∫

Σout
|z|−2|dz| <∞ which implies that Σout tends to ∞

nicely. Note that this assumption is satisfied when (4.18) holds for large enough z

on Σout. Denote by P0 the region bounded by Σin, and denote by P1 the region to

the right of Σout. Then (P0 ∪ P1) ⊂ Qr.

Property 1 (P1): For any function h0(z) which is analytic in P0 and continuous

to the boundary Σin, we have∫
Σin

h0(z)F0(z)Fi(z)dz = 0,

∫
Σin

h0(z)G0(z)Gi(z)dz = 0,∫
Σin

h0(z)F0(z)Gi(z)dz = 0,

∫
Σin

h0(z)G0(z)Fi(z)dz = 0,

(4.66)

for all i = 0, 1.

Property 2 (P2): Suppose h1(z) is an analytic function in P1 which is continuous

to the boundary Σout. Moreover, h1(z) = O(|z|−2) as z →∞ in P1. Then we have∫
Σout

h1(z)F1(z)Fi(z)dz = 0,

∫
Σout

h1(z)G1(z)Gi(z)dz = 0,∫
Σout

h1(z)F1(z)Gi(z)dz = 0,

∫
Σout

h1(z)G1(z)Fi(z)dz = 0,

(4.67)

for all i = 0, 1.
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Property 3 (P3): For any z ∈ Qr, we have

(4.68) F1(z)G0(z)− F0(z)G1(z) = 1.

Now we show the proof of these properties.

By the discussions after (4.53) we know e−2nφ(z) is analytic in P0. Together with

the analyticity of β(z) and R(z) in Qr, we obtain that the integrands of (4.66) are

analytic in P0. Therefore (P1) holds.

Note that 0 /∈ P1. So the integrands of (4.67) are analytic in P1. We change the

integral contour Σout to another contour which is the union of Σout∩{z||z| > C} and

an arc in {z||z| = C}∩Qr, where C is a large constant. Since <(φ(z)) > 0, R(z)→ I,

β(z) → 1, and h1(z) = O(|z|−2) as z → ∞ in Qr, we have that the integral on the

arc is of order O(C−1). Also note that the assumption on Σout implies the integral

on Σout ∩ {z||z| > C} tends to 0 as C goes to inifinity. Therefore (P2) follows by

taking C →∞.

It is direct to check the last property by using (4.58).

Recall we have the Fredholm kernel (4.59). The property (P1) hints that the

F0(z), G0(z) parts might be canceled in the expansion of the Fredholm determinant

when z ∈ Σin. Similarly, the property (P2) hints that F1(z), G1(z) parts might be

canceled when z ∈ Σout. The property (P3) implies that we can compute the residue

of the kernel at z = w. Therefore it helps us to evaluate the integrals even though

the integrand has a pole at z = w.

Now we state the main result of this section.

Proposition IV.17. Suppose M ≥ 2 is a positive integer, and suppose Σin and Σout

are two contours which satisfy the conditions (C1), (C2) with parameter 1 < λ < 2
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and (C3). We have

(4.69) det(1 +K) = det(1 + K̃),

where K is defined by (4.59), and K̃ is an integral operator on L2(Σin ∪ Σout,
dz
2πi

)

with kernel

(4.70) K̃(z, w) =



√
ṽ(z)ṽ(w)F0(z)G0(w)−F0(w)G0(z)

w−z , z, w ∈ Σout,√
ṽ(z)ṽ(w)F0(z)G1(w)−F1(w)G0(z)

w−z , z ∈ Σout, w ∈ Σin,√
ṽ(z)ṽ(w)F1(z)G0(w)−F0(w)G1(z)

w−z , z ∈ Σin, w ∈ Σout,√
ṽ(z)ṽ(w)F1(z)G1(w)−F1(w)G1(z)

w−z , z, w ∈ Σin.

Here

(4.71) ṽ(z) =
v(z)

1 + v(z)
=


sM

zM
, z ∈ Σout,

zM

sM
, z ∈ Σin.

Moreover, K̃ is a trace class operator.

Proof. We write

(4.72) A(z, w) =
F (z)G(w)− F (w)G(z)

w − z
,

and

(4.73) Aij(z, w) =
Fi(z)Gj(w)− Fj(w)Gi(z)

w − z
,

where i, j ∈ {0, 1}.

Define

(4.74) A0(z, w) :=



A00(z, w), z, w ∈ Σout,

A01(z, w), z ∈ Σout, w ∈ Σin,

A10(z, w), z ∈ Σin, w ∈ Σout,

A11(z, w), z, w ∈ Σin,
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and A1(z, w) := A(z, w)− A0(z, w).

The kernel A1 has the following properties:

(A1) For any α ≥ 1,

(4.75)

∫
z∈Σin∪Σout

v(z)αA1(z, z)
dz

2πi
= 0.

(A2) For any i = 0, 1 and α, β ≥ 1,∫
z∈Σin∪Σout

∫
w∈Σin∪Σout

v(z)αv(w)βAi(z, w)A1(w, z)
dw

2πi

dz

2πi

=

∫
z∈Σin∪Σout

v(z)α+βAi(z, z)
dz

2πi
.

(4.76)

(A3) For any i, j = 0, 1 and α, β ≥ 1,, we have∫
z∈Σin∪Σout

∫
w∈Σin∪Σout

v(z)αv(w)βAi(z
′, z)A1(z, w)Aj(w,w

′)
dw

2πi

dz

2πi

=

∫
z∈Σin∪Σout

v(z)α+βAi(z
′, z)Aj(z, w

′)
dz

2πi
.

(4.77)

Proof of (A1)

It is sufficient to show

(4.78)

∫
Σout

v(z)αA1(z, z)
dz

2πi
= 0,

∫
Σin

v(z)αA1(z, z)
dz

2πi
= 0.

By writint A1(z, z) as F (z)G′(z)− F ′(z)G(z)− F0(z)G′0(z) + F ′0(z)G0(z), it is easy

to see that A1(z, z) is bounded when z ∈ Q4 → ∞ and that zA1(z, z) is analytic

at 0. If we change the integral contour Σout to a large arc in Q4 with radius going

to infinity, the integrand is |v(z)αA1(z, z)| = O(|z−αM |) = O(|z|−2) and then the

integral can be arbitrary small. So we proved the first equation in (4.78). Similarly

if we shrink Σin to 0 we immediately obtain the second equation.

Proof of (A2)

We first show

(4.79)∫
z∈Σout

∫
w∈Σout

v(z)αv(w)βAi(z, w)A1(w, z)
dw

2πi

dz

2πi
=

∫
z∈Σout

v(x)α+βAi(z, z)
dz

2πi
.



71

By using the symmetry and the analyticity of the kernel Ai(z, w) ( i = 0, 1), one can

slightly deform the two contours to two nonintersecting contours z ∈ Σout,1 := Σout−ε

and w ∈ Σout,2 := Σout + ε for some small positive number ε. Write A1(w, z) =

A11(w, z) + A1,0(w, z) + A0,1(w, z). The property (P2) (see (4.67)) implies

(4.80)

∫
w∈Σout,2

v(w)βAi(z, w)A11(w, z)
dw

2πi
= 0,

and

(4.81)

∫
w∈Σout,2

v(w)βAi(z, w)A10(w, z)
dw

2πi
= 0.

So the left hand side of (4.79) becomes∫
z∈Σout,1

∫
w∈Σout,2

v(z)αv(w)βAi(z, w)A01(w, z)
dw

2πi

dz

2πi

=

∫
w∈Σout,2

∫
z∈Σout,1

v(z)αv(w)βAi(z, w)A01(w, z)
dz

2πi

dw

2πi

=

∫
w∈Σout,2

∫
z∈Σout,2+ε

v(z)αv(w)βAi(z, w)A01(w, z)
dz

2πi

dw

2πi

+

∫
w∈Σout,2

v(w)α+βAi(w,w)
dw

2πiw
,

(4.82)

where we used the property (P3) in the last equation. Combining with the fact

(4.83)

∫
z∈Σout,2+ε

v(z)αAi(z, w)A01(w, z)
dz

2πi
= 0,

we obtain (4.79). Similarly, we have

(4.84)∫
z∈Σin

∫
w∈Σin

v(z)αv(w)βAi(z, w)A1(w, z)
dw

2πi

dz

2πi
=

∫
z∈Σin

v(z)α+βAi(z, z)
dz

2πi
,

(4.85)

∫
z∈Σin

∫
w∈Σout

v(z)αv(w)βAi(z, w)A1(w, z)
dw

2πi

dz

2πi
= 0,

and

(4.86)

∫
z∈Σout

∫
w∈Σin

v(z)αv(w)βAi(z, w)A1(w, z)
dw

2πi

dz

2πi
= 0.
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So we proved (A2).

Proof of (A3) It is similar to the proof of (A2).

By using the properties (A1), (A2), (A3) we can prove the following two claims.

Claim IV.18. Both
√
vA0

√
v and

√
vA1

√
v are trace class operators. As a result,

K̃ is also a trace class operator.

Claim IV.19. det(1 +
√
vA1

√
v) = 1.

Together with the following Lemma and the a simple conjugation, det(1 + K) =

det(1 + K̃) and Proposition IV.17 follows.

Lemma IV.20. Let v(z) be a function on C, a finite union of simple contours, such

that

(4.87) sup
z∈C
|v(z)| < 1.

Let A = A0+A1 be the sum of two integral operators on L2(C, dz
2πi

) such that
√
vA0

√
v

and
√
vA1

√
v are both trace class, which satisfy

(4.88) tr[vn−
1
2Aiv

mA1

√
v] = tr[vn+m− 1

2Ai
√
v],

(4.89) Aiv
nA1v

mAj = Aiv
n+mAj,

for all i, j ∈ {0, 1} and n,m ≥ 1. Then

(4.90) det(1 +
√
vA
√
v) = det(1 +

√
vA1

√
v) det

(
1 +

√
v

1 + v
A0

√
v

)
.

The rest of the proof is to show Lemma IV.20, Claim IV.18 and Claim IV.19.

Proof of Lemma IV.20 We write the right hand side of (4.90) as det(1 + X + Y )

where X =
√
vA1

√
v +

√
v

1+v
A0

√
v, Y =

√
vA1

v
1+v

A0

√
v. Denote Ỹ = v

√
v

1+v
A0

√
v. We

can check that X, Y, Ỹ have the following properties:
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(a) tr[Y n] = tr[Ỹ n], for all n ≥ 1,

(b) tr[XY n] = tr[XỸ n], for all n ≥ 1,

(c) XY nX = XỸ nX, for all n ≥ 1.

By applying these properties, it is easy to check tr(X + Y )n = tr(X + Ỹ )n for all

n ≥ 1. Therefore det(1 + X + Y ) = det(1 + X + Ỹ ). Combining with the fact that

1 +X + Ỹ = 1 +
√
vA
√
v, (4.90) follows immediately.

Now we come back to check (a), (b) and (c). Notice that (4.88) and (4.90) imply

(4.91) tr[f(v)v−
1
2Aig(v)A1

√
v] = tr[f(v)g(v)v−

1
2Ai
√
v],

(4.92) Aif(v)A1g(v)Aj = Aif(v)g(v)Aj,

for all i, j ∈ {0, 1}, where f(z), g(z) are two arbitrary functions which have con-

vergent power series expansion within the unit disk and satisfy f(0) = g(0) = 0.

Especially we apply (4.91) by taking f(v) = v
1+v

, g(v) = v and i = 0, and obtain

tr(Y ) = tr(Ỹ ). For n ≥ 2, we apply (4.92) and have

Y n =
√
vA1

v

1 + v
A0vA1

v

1 + v
A0 · · · vA1

v

1 + v
A0

√
v

=
√
vA1

v

1 + v
A0

v2

1 + v
A0 · · ·

v2

1 + v
A0

√
v.

(4.93)

Then we use the identity tr(AB) = tr(BA) and have

tr(Y n) = tr

(
v
√
v

1 + v
A0vA1

v

1 + v
A0

v2

1 + v
A0 · · ·

v2

1 + v
A0

√
v

)
= tr

(
v
√
v

1 + v
A0

v2

1 + v
A0 · · ·

v2

1 + v
A0

v2

1 + v
A0

√
v

)
,

(4.94)

where we used (4.92) again in the second equation. Therefore we proved (a) for all

n. Similarly we can prove (b) and (c).

Proof of Claim IV.18 The strategy is to write
√
vA0

√
v as the product of two

operators which are both Hilbert-Schmidt. We first define two new contours Σ′in



74

and Σ′out as follows. They satisfy the conditions (C1), (C2), and (C3), where the

parameter λ for the condition (C2) is replaced by λ′ for some λ′ ∈ (λ, 2). Moreover,

we take Σ′in to be between Σr and Σin, and Σ′out to be between Σr and Σout.

Note that it is possible to take such Σ′out since λ < λ′. This condition, together

with (C2), also implies that

(4.95) dist(w,Σ′out) = O(log |w|),

as w →∞ satisfying w ∈ Σout.

Define the operator L1 mapping L2(Σ′in ∪ Σ′out,
dz
2πi

) to L2(Σin ∪ Σout,
dz
2πi

) by the

kernel

(4.96) L1(z, w) =



√
v(z)A11(z, w), z ∈ Σin, w ∈ Σ′in,√
v(z)A10(z, w)

√
v(w)w, z ∈ Σin, w ∈ Σ′out,√

v(z)A01(z, w), z ∈ Σout, w ∈ Σ′in,√
v(z)A00(z, w)

√
v(w)w, z ∈ Σout, w ∈ Σ′out.

Similarly, define the operator L2 mapping L2(Σin ∪ Σout,
dz
2πi

) to L2(Σ′in ∪ Σ′out,
dz
2πi

)

by the kernel

(4.97) L2(z, w) =



A01(z, w)
√
v(w), z ∈ Σ′in, w ∈ Σin,

A00(z, w)
√
v(w), z ∈ Σ′in, w ∈ Σout,

v(z)−1/2z−1A11(z, w)
√
v(w), z ∈ Σ′out, w ∈ Σin,

v(z)−1/2z−1A10(z, w)
√
v(w), z ∈ Σ′out, w ∈ Σout.

Then

(4.98)
√
v(z)A0(z, w)

√
v(w) =

∫
Σ′in∪Σ′out

L1(z, u)L2(u,w)
du

2πi
,
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for all z, w ∈ Σin∪Σout. This can be shown as follows when z, w ∈ Σout. In this case,

the right hand side of (4.98) equals
√
v(z)v(w) times

(4.99)

∫
Σ′in

A01(z, u)A00(u,w)
du

2πi
+

∫
Σ′out

A00(z, u)A10(u,w)
du

2πi
.

Now, A01(z, u)A00(u,w) is analytic for u inside Σ′in since z, w ∈ Σout, hence the first

integral is 0. On the other hand, for z, w ∈ Σout, A00(z, u)A10(u,w) is analytic for u

on the right of the contour Σ′out, except for the simple pole at u = w. By using (4.68)

one can compute the residue at u = w and rewrite (4.99) as

(4.100) 0 + A00(z, w) +

∫
CR

A00(z, u)A10(u,w)
du

2πi

where R is some positive number larger than |w|, and CR is some contour outside

of {z; |z| = R} which satisfies (4.18). Finally, taking R → ∞ and noting that

|A00(z, u)A10(u,w)| = O(|u|−2), we find that (4.98) holds when z, w ∈ Σout. For

other cases of z and w the proof is similar and we skip the details.

Now we show that

(4.101)

∫
Σ′in∪Σ′out

∫
Σin∪Σout

|L1(z, w)|2|dz||dw| <∞,

and

(4.102)

∫
Σin∪Σout

∫
Σ′in∪Σ′out

|L2(z, w)|2|dz||dw| <∞.

If z ∈ Σin, w ∈ Σ′out, we have |L1(z, w)| = O(|w|−λ
′

2 ) as w becomes large by

condition (C2) and the fact that nφ(w) = T
2
w − a−n

2
logw + O(1) as w →∞. Since

λ′ > λ > 1, L1(z, w) is square integrable on Σin×Σ′out. Similarly if z ∈ Σout, w ∈ Σ′in,

we have |L1(z, w)| = O(|z|−1−λ
2 ). Hence (4.101) follows if we show that

(4.103)

∫
Σ′out

∫
Σout

|L1(z, w)|2|dz||dw| <∞.
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For this purpose, we observe that

(4.104)
e−n(φ(z)+φ(w))(F0(z)G0(w)− F0(w)G0(z))

w − z
= O(|zw|−1)

when z, w ∈ Q4 tend to infinity. This follows from (4.62), (4.63), the proper-

ties R(z) = I + O(|z|−1) and β(z) = 1 + O(|z|−1). As a result |L1(z, w)| =

O(|z|−1−λ
2 |w|−λ

′
2 ) for z ∈ Σout, w ∈ Σ′out. This implies (4.103) and hence (4.101)

is proved.

We now prove (4.102). If z ∈ Σ′out, w ∈ Σin, a calculation as before implies that

(4.105) |L2(z, w)| = O(|z|
λ′−3

2 ).

Since λ′ < 2, L2(z, w) is square integrable on Σ′out×Σin. Similarly if z ∈ Σ′in, w ∈ Σout,

we have L2(z, w) = O(|w|−1). Finally, consider the case when z ∈ Σ′out, w ∈ Σout.

The estimates on this case is more delicate. We have |L2(z, w)| ≤ C|z|λ
′

2
−1|w|−λ2 |z−

w|−1 ≤ C|w|−λ2 |z −w|−1 for some constant C. Notice that if w ∈ Σout large enough,

we have ∫
Σ′out∩{z;|=(z)−=(w)|≤log |w|}

|z − w|−2|dz|

≤
∫

Σ′out∩{z;|=(z)−=(w)|≤log |w|}

C1

(log |w|)2
|dz|

≤ C ′1
log |w|

,

(4.106)

where we used the facts that dist(w,Σ′out) = O(log |w|) and =(z) ∼ z+O(log |z|) by

the condition (C2) of Σ′out. We also have∫
Σ′out∩{z;|=(z)−=(w)|>log |w|}

|z − w|−2|dz|

≤
∫

Σ′out∩{z;|=(z)−=(w)|>log |w|}
|=(z)−=(w)|−2|dz|

≤ C2

∫
Σ′out∩{z;|=(z)−=(w)|>log |w|}

|=(z)−=(w)|−2d=(z)

=
C ′2

log |w|
.

(4.107)
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Therefore, by combing (4.106) and (4.107), we have

(4.108)

∫
Σ′out

|z − w|−2|dz| ≤ C3

log |w|

for w ∈ Σout large enough, where C3 is some positive constant. Hence

(4.109)

∫
Σout

∫
Σ′out

|L2(z, w)|2|dz||dw| <∞

by the square integrability of |w|−λ/2(log |w|)−1/2 on Σout. (4.102) is proved by the

discussions above for the three cases.

Now
√
vA0

√
v is a composition of two Hilbert-Schmidt operators, hence it is a

trace class operator. Notice that K itself is a trace class operator (see Remark IV.7),

√
vA1

√
v = K −

√
vA0

√
v is also a trace class operator. K̃ is the multiplication of

some bounded operators and a trace class operator
√
vA0

√
v, so it is trace class.

Proof of Claim IV.19 By expanding the Fredholm determinant det(1 +
√
vA1

√
v)

and using the properties (A1),(A2),(A3) of the kernel A1, one obtain Claim IV.19

immediately.

4.2.2 Steepest Descent Analysis

In this section, we will use Proposition IV.17 to prove Theorem IV.3. We suppose

T = O(n) (see the Remark IV.2) and a = (1 + γ)n for some positive constant γ. Set

M = 2
√
an + x (a−n)2/3

22/3(an)1/6 where x ∈ R is fixed. We will consider the asymptotics of

det(1 + K̃) when n→∞.

First we notice that we can remove the condition that Σin, Σout are inside, outside

respectively, of the circle Σr. In fact, K̃ has no poles on Σr. tr(K̃k) (k = 0, 1, · · · ),

is independent of whether Σin ∪ Σout intersects Σr or not. Moreover, if we change

the contours in some bounded region, K̃ is still a trace class operator as long as the

two contours does not intersect in that region. This follows from a similar argument

with the claim that
√
vA0

√
v is a trace class, where we just need to replace v by ṽ.
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In order to find the steepest descent contour of the kernel, we need to consider

the leading terms of R(z), φ(z) and ṽ(z).

For R(z), we come back to the Riemann-Hilbert problem IV.16. Notice that

the jump matrix is exponentially small except at a small neighborhood of ξ and

ξ̄. Moreover, the difference of the jump matrix vR and I decays fast enough as it

behaves like z−M/2. By using the standard Riemann-Hilbert analysis([32]), we know

(4.110) R(z) = I +O(n−1)

uniformly for z with O(1) distance to the jump contours of R(z), i.e., uniformly for

z satisfying dist(z,Γ′ ∪ Γin ∪ Γout,1 ∪ Γout,2) ≥ C where C is some positive constant.

We define

(4.111) ψ(z) :=
M

2n
(log(z)− log(s)) .

Therefore

(4.112) ṽ(z) =


e2nψ(z), z ∈ Σin,

e−2nψ(z), z ∈ Σout.

Denote by ψc(z) =
√
a/n(log(z) − log(s)) the leading term of ψ(z). Then zc :=

<(ξ) = a−n
T

is the double critical point of the function φ(z) + ψc(z). In fact,

d

dz
(φ(z) + ψc(z)) =

T

2n

√
(z − ξ)(z − ξ̄)

z
+

2
√
an

2nz

=
T

2nz

(√
(z − zc)2 + =(ξ)2 + =(ξ)

)
=

T (z − zc)2

2nz
(√

(z − zc)2 + =(ξ)2 −=(ξ)
)

= − T 3

8a1/2n3/2(a− n)
(z − zc)2 +O(|z − zc|3)

(4.113)

as z → zc. Here the notation O(|z − zc|3) means the term is bounded by C|z − zc|3

where C is independent of both zc and n.
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Now we pick

(4.114) r = |s| = zce
2n
M
<(φ(zc)).

Then

(4.115) < (φ(zc) + ψ(zc)) = 0.

By using (4.113) we have the following expansion in a small (but still O(1) with

respect to n) neighborhood of zc

φ(z) + ψ(z) = ic1 +
xT

25/3a1/6n7/6(a− n)1/3
(z − zc)−

T 3

24a1/2n3/2(a− n)
(z − zc)3

+O(n−2/3|z − zc|2) +O(|z − zc|4),

(4.116)

where c1 is some real constant.

Step 1: Selection of the Contours

Throughout this step, we use the notation c to represent a positive constant which

is independent of N and z. This constant can have different values in different places.

Denote by L the open line segment from ξ̄ to ξ.

Recall that the set {z|<(φ(z)) = 0} consists of four segments. The segment which

intersects the interval (0,+∞) and the segment which intersects (−∞, 0) are denoted

by Γ and Γ1 respectively. The union of the other two segments is denoted by Γ2.

We now show that Γ does not intersect L, and, moreover, Γ lies on the right of

L. Suppose that Γ intersects L. Let zc + iλ be the intersection with the largest

imaginary value. Then <(φ(z0 + iλ)) = 0 since z0 + iλ ∈ Γ. On the other hand,

<(φ(zc + iλ)) =

∫ λ

=(ξ)

d

dt
<(φ(zc + it))dt

=
T

2n

∫ λ

=(ξ)

√
(zc + it− ξ)(zc + it− ξ̄)

t
dt.

(4.117)
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Notice that
√

(zc + it− ξ)(zc + it− ξ̄) =
√
=(ξ)2 − t2 is real for t ∈ [−=(ξ),=(ξ)].

This is positive if Γ̃, the part of Γ from ξ to zc+ iλ, is to the left of L, and is negative

if Γ̃ is to the right of L. In any case, we see that <(φ(z0 + iλ)) 6= 0. This gives a

contradiction. Hence Γ does not intersect L. Now <(φ(zc)) > 0 since zc lies to the

right of Γ1 and zc ∈ L. So
√

(zc + it− ξ)(zc + it− ξ̄) < 0 for all t ∈ (0,=(ξ)), which

implies Γ is on the right of L. Thus, the intersection of Γ and R is on (zc,+∞). See

Figure 4.5.

Denote by φ̃(z) the new function obtained by changing the branch cut of φ(z) to

Γ2, i.e., φ̃(z) := −φ(z) if z in the region which contains +∞ and is bounded by Γ

and Γ2, and φ̃(z) = φ(z) for all other z. See Figure 4.3. Recall that Γ2 does not

intersect the region Q3∪Q4. This fact makes φ̃(z) more convenience than φ(z) since

our contours Σin and Σout will be chosen in Q3 ∪Q4.

L

Figure 4.5: The graph of Γ ∪ Γ1 ∪ Γ2 = {z|<(φ(z)) = 0} and L
.

We first discuss the global picture of the set {z|<(φ̃(z) + ψ(z)) = 0} and its

relative location to the set {z|<(φ(z)) = 0}.
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Note that

d(<(φ̃(z) + ψ(z)))

dz
=
T 2
√

(z − ξ)(z − ξ̄) +M

2nz

=
T

2n

2
√

(z − ξ)(z − ξ̄) + =(ξ) +O(n−2/3)

z
,

(4.118)

where the 2
√

denotes the square root function which is negative on R and is branch

cut is Γ2. It is easy to see that <(φ̃ + ψ)(±∞) = −∞, and <(φ̃ + ψ)(0) = +∞.

Moreover, <(φ̃+ ψ) is monotonic in (−∞, 0) and in (0,+∞).

For z ∈ L,

φ(z) + ψ(z)− φ(zc)− ψ(zc)

=

∫ z

zc

T
√

(w − ξ)(w − ξ̄) +M

2nw
dw

=

∫ =(z)/=(ξ)

0

−T=(ξ)
√

1− t2 +M

2n(zc + t=(ξ)i)
i=(ξ)dt,

(4.119)

Since <(φ(zc) + ψ(zc)) = 0, M = T=(ξ) +O(n1/3), and T = O(n), we find that

<(φ(z) + ψ(z)) =

∫ =(z)/=(ξ)

0

−T=(ξ)
√

1− t2 +M

2n(z2
c + t2=(ξ)2)

t=(ξ)2dt

=
T=(ξ)3

2n

∫ |=(z)|/=(ξ)

0

−
√

1− t2 + 1 +O(nN−2/3)

z2
c + t2=(ξ)2

|t|dt.
(4.120)

Now it is easy to check that for any ε > 0, there exists n0 > 0 such that

(4.121)

∫ ε

0

−
√

1− t2 + 1 +O(n−2/3)

z2
c + t2=(ξ)2

|t|dt > 0

for all n ≥ n0. Therefore we find that ∀ε > 0, there exists n0 > 0 such that

(4.122) <(φ̃(z) + ψ(z)) = <(φ(z) + ψ(z)) > 0,

for all z ∈ L such that |z − zc| ≥ ε and for all n ≥ n0.

Now we claim that there are at most four points in the intersection of Γ ∪ Γ1 ∪

Γ2 = {z|<(φ(z)) = 0} and {z|<(φ̃(z) + ψ(z)) = 0}. See Figure 4.7. Note that

the intersection is the same as that of <(φ(z)) = 0 and <(ψ(z)) = 0. Note that
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{z|<(ψ(z)) = 0} is the circle centered at the origin with radius r where r is defined

in (4.114). We have r > zc by (4.115) and <(φ(zc)) > 0, and also r < |ξ| by (4.122)

and <(φ(ξ)) = 0. Consider the function H(θ) := <(φ(reiθ)). This function is

continuous at all θ but the derivative is discontinuous at θ if reiθ ∈ Γ. It is easy to

check that

(4.123)
dH(θ)

dθ
= −=

(√
(reiθ − ξ)(reiθ − ξ̄)

)
.

Notice that (reiθ − ξ)(reiθ − ξ̄) is real only if θ = 0, π,± arccos(<(ξ)/r), which

means (4.123) has at most four zeros. These zeros divide the circle into at most four

arcs. Since H(θ) = 0 at the non-differential points, one can see that each closed

arc contains at most one zero of H(θ). Hence, there are at most four points on the

intersection of {z|<(φ(z)) = 0} and {z|<(φ̃(z) + ψ(z)) = 0}.

Now we are ready to sketch a graph of the set {z|<(φ̃(z) + ψ(z)) = 0}. This set

can be viewed as the integral curve of the vector field <((φ̃′(z)+ψ′(z))dz) = 0. Note

that the vector field has a pole at 0, a critical point at zc, and it is discontinuous

along Γ2. By the discussion after (4.118), {z|<(φ̃(z) + ψ(z)) = 0} intersects R at

exact two poins which are zc and a point on the left of the origin. Moreover, the

vector field is circular near 0. When z → zc, by using (4.116), there are six rays of

<(φ̃ + ψ) = 0 going out zc with angles ±π
6
,±π

2
,±5π

6
. Each pair of neighboring rays

form a region, (if they intersect, we choose the first bounded region), we label these

regions from left to right the region R1,R2,R3, and R4. See Figure 4.6 for example.

Here by symmetry the region R2 and R3 both represent he union of two regions

formed by the neighboring rays. Note that it might be possible that two regions turn

out to be the same one. For example, if the two rays with angles π
2

and π
6

meet, the

regions R2 and R4 are the same. The cubic behavior of φ̃ + ψ near zc implies that

<(φ̃+ψ) > 0 in the region R1 and R3, and that <(φ̃+ψ) < 0 in the region R2 and
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R4.

By symmetry and a standard topological argument, the region I is bounded and

contains the origin.

By (4.122), L is contained the regionR1 orR3. However, L is outside of the region

R1 near zc. It implies that L is contained in the region R3. Since the boundary

rays of the region R3 cannot intersect R except zc, both of Γ and Γ1 intersect the

boundary of the region R3. Hence we obtained at least four intersection points of

{z|<(φ(z)) = 0} and {z|φ̃(z) + ψ(z) = 0}. By the discussion about the maximal

number of intersection points in the paragraph before (4.123), there are exact four

intersection points. Two points are on Γ and the other two are on Γ1. Therefore

the trajectories of {z|<(φ̃(z) + ψ(z)) = 0} do not intersect Γ2. We can complete

the six rays going out from zc and obtain the Figure 4.6. These six rays actually

are all the trajectories of {z|<(φ̃(z) + ψ(z)) = 0}. In fact, by a similar argument

to our previous discussion one can show there are at most four intersection points

of {z|<(φ̃(z) + ψ(z)) = 0} and {z||z| = R} for any R ≥ |ξ|. On the other hand,

the four unbounded rays in Figure 4.6 intersect with {z||z| = R} at exact four

points. For R ∈ (r, |ξ|), we similarly have the formula (4.123) with r replaced by

R. Therefore for each arc divided by the critical points, Γ2 cannot intersect twice

since the function is monotonic between two nearest intersecting points. We also

notice that Γ2 is bounded by Γ1 ∪ Γ and the rays going out zc with angles ±π
2
,±π

6
,

therefore Γ2 cannot intersect the arc (divided by the critical points) at only one

point. Hence Γ2 does not intersect {z||z| = R} when R ∈ (r, |ξ|), and there are exact

four intersection points of {z|<(φ̃(z) +ψ(z)) = 0} and {z||z| = R}, which are on the

rays in Figure 4.6.

Now we are ready to choose the contours Σin and Σout. We pick the contour Σin
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Figure 4.6: The graph of <(φ̃(z) +
ψ(z)) = 0

Figure 4.7: New choice of Σin and Σout

in the intersection of Q3 and the region R2, and the contour Σout in the intersection

of Q = Q3 ∪ Q4 and the region R3. See Figure 4.7. Then the kernel K̃ decays

exponentially except near the double critical point zc. More precisely, we construct

the contours Σout = Σout,0 ∪ Σout,1 and Σin = Σin,0 ∪ Σin,1 satisfying the following

conditions.

(1) Σin ⊂ Q3, Σout ⊂ Q3 ∪Q4, and dist(Σin ∪ Σout,Γin ∪ Γout,1 ∪ Γout,2) > c,

(2)Σin,1 and Σout,1 are both in a disc centered at zc of radius cn−1/4.

(3)<(−φ(z) + ψ(z)) > c, for all z ∈ Σout,2 ∩ Q4. Moreover, <(−φ(z) + ψ(z) −

λ
2n

log z) = c when z ∈ Σout,2 goes to infinity.

(4) <(φ(z) + ψ(z)) > cn−3/4 for all z ∈ Σout,2 ∩Q3.

(5)<(φ(z) + ψ(z)) < −cn−3/4 for all z ∈ Σin,2.

The condition (1) and the second part of (3) are basically (C3) and (C2), which

are necessary to apply Proposition IV.17.

Now we pick Σin,1 to be a smooth curve in {z; |z−zc| ≤ cn−1/4} which behaves like

arg(z − zc) = ±2π
3

as |z − zc| ≥ O(n−1/3). Notice that φ(z) + ψ(z) ∼ ic1 − c(z − zc)3
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as n−1/3 ≤ |z − zc| ≤ n−1/4 by (4.116), therefore the endpoints of Σin,1 is still in the

region R1. We can construct Σin = Σin,2 ∪Σin,1 by completing Σin,1 smoothly in the

region R1 such that the condition (5) holds.

Similarly we can pick Σout,1 and Σout,2 in the region R2 satisfying the conditions

(1)-(4).

Step 2: Asymptotic Analysis

Now we are going to discuss the asymptotics of Ǩ(z, w) on Σin ∪ Σout. Note the

following:

(1) For all z ∈ Σout,2 ∩Q3,

(4.124) e−nψ(z)F0(z) = O(e−cn
1/4

).

For all z ∈ Σout,2 ∩Q4,

(4.125) e−nψ(z)F0(z) = O(e−cn).

Moreover, for z large enough on Σout,2 ∩Q4,

(4.126) e−nψ(z)F0(z) = O(e−cnz−
λ
2 ).

(2) For all z ∈ Σin,2,

(4.127) enψ(z)F1(z) = O(e−cn
1/4

).

The above estimate is also valid if we replace F1 by G1.

(3) For all z ∈ Σout,1,

(4.128) e−nψ(z)F0(z) = O(1).

(4) For all z ∈ Σin,1,

(4.129) enψ(z)F1(z) = O(1).
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(5) The above estimations are also valid if we replace F0 by G0, or replace F1 by

G1.

Therefore it is easy to check if any of z, w is in Σin,2 ∪ Σout,2, we have

(4.130) Ǩ(z, w) = O(e−cn
1/4

).

By a standard argument of Fredholm analysis, we have

(4.131) det(1 + Ǩ)|L2(Σin∪Σout) = det(1 + Ǩ)|L2(Σin,1∪Σout,1) +O(e−cn
1/4

).

Now we want to focus on Ǩ(z, w) when z, w are both in Σin,1 ∪ Σout,1. We do the

following rescaling

z = zc + 22/3a1/6n1/6(a− n)1/3T−1ξ,

w = zc + 22/3a1/6n1/6(a− n)1/3T−1η,

(4.132)

where ξ, η are both in Σ̃
(n)
in := 2−2/3a−1/6n−1/6(a − n)−1/3T (Σin,1 − zc) and Σ̃

(n)
out :=

2−2/3a−1/6n−1/6(a− n)−1/3T (Σout,1 − zc). Then

(4.133) det(1 + Ǩ(z, w)) = det(1 + K̂(ξ, η)),

where

(4.134) K̂(ξ, η) = 22/3a1/6n1/6(a− n)1/3T−1Ǩ(z, w).

We also notice that

(4.135) β(zc + 22/3a1/6n1/6(a− n)1/3T−1ξ) = ei
π
4 +O(n−1/12),

for all ξ ∈ Σ̃
(n)
in ∪ Σ̃

(n)
out.

Then it is easy to check if ξ, η ∈ Σ̃
(n)
in , or ξ, η ∈ Σ̃

(n)
out we have

(4.136) K̂(ξ, η) = O(n−1/12).



87

If z ∈ Σ̃
(n)
in but w ∈ Σ̃

(n)
out, we have

(4.137) K̂(ξ, η) =
e−mx(ξ)+mx(η)

η − ξ
+O(n−1/12),

where

(4.138) mx(ξ) := −1

2
xξ +

ξ3

6
.

Similarly, if z ∈ Σ̃
(n)
out but w ∈ Σ̃

(n)
in , we have

(4.139) K̂(ξ, η) =
−emx(ξ)−mx(η)

η − ξ
+O(n−1/12).

Therefore det(1 + K̂) converges to FGUE(x) and Theorem IV.3 follows, as what we

discussed at the end of subsection 3.3.



CHAPTER V

Identities on the Airy Process and Tracy-Widom
Distributions

5.1 Introduction and Results

It is believed that the Airy process A(t) is an universal limit of the spatial fluc-

tuations for models in the KPZ class. The limit theorem to the Airy process is es-

tablished for several special cases in 2-dimensional directed last passage percolation

(DLPP), 1+1 dimensional random growth, nonintersecting processes, and random

matrices. See, for example, [27] and the references therein.

The basic connection between the Airy process and the Tracy-Widom distribution

is that the marginal distribution of A(t) at a fixed t is FGUE(x). The joint distribu-

tion at finitely many times is also explicit and is given by a determinantal formula

involving the Airy function. The Airy process is stationary but is not Markovian.

In addition to the above basic connection, there are interesting identities between

the supremum of a function of the Airy process and the Tracy-Widom distribution

functions.

Denote Â(t) = A(t)− t2.

We first review two known identities. The first one is proved by Johansson in [52]:

(5.1) P
(

22/3 sup
t∈R
Â(t) ≤ x

)
= FGOE(x)

88
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for every x ∈ R. The second one is proved by Quastel and Remenik in [67]

(5.2) P
(

sup
t≤w
Â(t) ≤ x−min{0, w}2

)
= G2→1

w (x)

for every w ∈ R and x ∈ R, where G2→1
w (x) is the marginal distribution function of

the process A2→1 introduced in [22] (see (1.7) of [67]).

In this chapter, we present the following five new identities. If B(t) is a Brownian

motion, denote

(5.3) B̂(t;w) = B(t)− 2
√

2wt.

Theorem V.1. (a) ([14]) Let A(1)(t) and A(2)(t) be two independent Airy processes.

Then

(5.4) P

(
sup
t∈R

(
α1/3Â(1)(α−2/3t) + β1/3Â(2)(β−2/3t)

(α + β)1/3

)
≤ x

)
= FGUE(x)

for every α, β > 0 and for every x ∈ R.

(b) ([15]) Let A(t) be the Airy process and A(−t) be its time reversal, then

(5.5) P

(
sup
t∈R

(
Â(t) + Â(−t)

2

)
≤ x

)
= FGUE(x)2

for every x ∈ R.

(c) ([30, 15]) Let B1(t),B2(t), · · · , t ≥ 0 be independent standard Brownian mo-

tions, then

(5.6) P

(
sup

0=t0≤t1≤···≤tk
(Â(tk) +

√
2

k∑
i=1

B̂i(ti;wi)− B̂i(ti−1;wi)) ≤ x

)

= F spiked
k (x;w1, . . . , wn)

for every w1, . . . , wk ∈ R and every x ∈ R, where F spiked
k (x;w1, . . . , wn) is the distri-

bution introduced in [7, Formula (54)] and [6, Corollary 1.3].
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(d) ([30, 15]) Let A(1)(t),A(2)(t) be two independent Airy processes, B1(t),B2(t), · · · , t ≥

0 be independent two-sided Brownian motions with B1(0) = B2(0) = · · · = 0, then

(5.7)

P

(
sup

t0≤t1≤···≤tsk
(α

1
3 Â(1)(α−

2
3 t0) +

√
2

k∑
i=1

B̂i(ti;wi)− B̂i(si−1;wi) + β
1
3 Â(2)(β−

2
3 sk) ≤ x

)

= F spiked
k (x;w1, . . . , wn)

for every α, β > 0, w1, . . . , wk ∈ R and every x ∈ R.

(e) ([30, 15]) Let A(t) be the Airy process and B(t) be the two-sided Brownian

motion with B(0) = 0, then

(5.8) P
(

sup
t∈R

(Â(t) +
√

2B(t) + 4(w+1t<0 − w−1t>0)t) ≤ x

)
= Fst(x;w+, w−)

for every w+, w− ∈ R and every x ∈ R, where Fst(x;w+, w−) is the distribution

function introduced in [16].

There are at least three different ways to understand these identities.

First of all, it is conjectured that there is a relation between the Airy process

and KPZ equation. More precisely, the Airy process is the limit of the solution to

certain specific stochastic heat equation, which arises from the continuum random

polymer. By using this relation, one can naturally obtain (5.1), (5.2) and (5.8). See

[66] for details. It will be quite interesting to understand other identities in the KPZ

language.

Second, as we mentioned in the introduction chapter, the Airy process is the

limiting process of the top curve of certain non-intersecting processes. Therefore (5.1)

means that the height of non-intersecting Brownian excursions converges to FGOE

[77]. Similarly (5.4) implies the width of non-intersecting Brownian bridges converges
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FGUE [14]. It is still open how to obtain other identities from the non-intersecting

models.

Finally, all these identities can be understood in solvable directed last passage

percolation (DLPP) models. DLPP models are defined as follows: Consider the

lattice sites Z2
+. Suppose each site is associated with a random weight w(i, j) for all

i, j ≥ 1. Denote by Π(M,N) the set of up/right paths from (1, 1) to (M,N) and define

(5.9) G(M,N) := max
π∈Π(M,N)

∑
(i,j)∈π

w(i, j),

which is called the (directed) point to point last passage time.

The DLPP model is a specific 2-d random growth model, which can be thought

as a randomly growing Young diagram [48]. When the entries are i.i.d. exponential

variables, this DLPP model is equivalent to the totally asymmetric exclusion process

[50]. There has been huge progress on the asymptotic behavior of the DLPP model.

The first breakthrough is [9] where the author considered the longest increasing

subsequence which is equivalent to the so-called Poisson DLPP model [5]. Then

[50] considered the DLPP model when all the entries are i.i.d. geometric variables

or i.i.d. exponential variables. In all the cases above, the limiting fluctuation of the

point to point last passage percolation is Tracy-Widom distribution FGUE.

Recall that FGUE is the marginal distribution of the Airy process. In the DLPP

model with i.i.d. geometric or exponential entries, it is proved that the process defined

by the (rescaled) last passage time from one fixed point to multiple points converges

to the Airy process. More precisely, the process G(N + t, N − t), |t| < N after

rescaling converges to the process Â, the Airy process minus a parabola, as N →∞.

This convergence is not only in the finite dimensional sense but also in the functional

limit sense [52].
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Besides the cases when all the entries are i.i.d. as we mentioned above, there

are also many results when the entries are not i.i.d. variables. For examples, the

asymptotics of G(M,N) was obtained in [17] when the entries contain certain re-

flective/rotational symmetry. [16] considered the Poisson DLPP with heavy weights

on the left and bottom edges, which is equivalent to the DLPP with i.i.d. geometric

variables except that the entries on the two edges are geometric variables of differ-

ent weights. [7] considered the DLPP model with i.i.d. exponential variables except

that the entries on the finitely many rows at the bottom are exponential variables of

different parameters. This result is also valid for the geometric variable case [47].

Now we explain how one can obtain the identities (5.1), (5.2), (5.4)-(5.8) in the

solvable DLPP models. The identity (5.2) can be obtained by considering a point-to-

half line last passage time by using the result of [22]. (5.4) arises naturally if one con-

siders the point to point directed last passage time with i.i.d. geometric entries in two

different methods. Similar considerations in the DLPP model with i.i.d. geometric

entries with reflectional/rotational symmetry give rise to (5.1) and (5.4). The identi-

ties (5.6) and (5.7) follow from the DLPP model with i.i.d. geometric entries in each

row where several finite rows are of special parameters. Similarly (5.8) follows from

the DLPP model with i.i.d. geometric entries except for the first row and the first

column.

The above explanation gives an indirect method to prove these identities. This

idea was first used to prove the identity (5.1) by Johansson [52]. In this dissertation,

we will modify Johansson’s approach and prove the identities in Theorem V.1 [14,

15, 30].

The proofs of (5.4) and (5.5) both use a functional limit result that the point to

the diagonal line last passage time in the DLPP model with i.i.d. geometric entries
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converges to Â. And the proofs (5.6), (5.7) and (5.8) use a similar functional limit

result for the point to horizontal/vertical line last passage time in the same DLPP

model, which we prove in section 5.3. We only present the proofs of (5.4) and (5.6),

other identities in Theorem V.1 can be obtained similarly.

Remark V.2. A direct proof of (5.1) is given in [31] by using a new Fredholm deter-

minant formula of P(A(t) ≤ g(t), t ∈ [−T, T ]) for a general function g and constant

T > 0. This method also works for (5.2). It is interesting to find direct proofs of the

identities in Theorem V.1.

Remark V.3. In [30], the authors prove a so-called uniform slow decorrelation prop-

erty for the DLPP model with i.i.d. geometric entries. (5.6), (5.7), and (5.8) can be

obtained by using this property. However, in this dissertation, we only prove a weak

version of the property which is sufficient for the proof of these identities.

5.2 Proof of (5.4)

By symmetry we may assume α ≤ β. Let w(i, j), (i, j) ∈ Z2
+, be independent

random variables with geometric distribution with parameter 1− q, i.e., P(w(i, j) =

k) = (1 − q)qk, k = 0, 1, 2, · · · . The limiting fluctuations of G(M,N) are known to

be FGUE in [50] as M and N tend to infinite with a finite ratio. In particular, when

M = N = (α + β)n,

(5.10) lim
n→∞

P
(
G((α + β)n, (α + β)n)− µ(α + β)n

σ(α + β)1/3n1/3
≤ x

)
= FGUE(x),

where

(5.11) µ =
2
√
q

1−√q
, σ =

q1/6(1 +
√
q)1/3

1−√q
.

Consider the lattice points on the line connecting the points (1, 2αn) and (2αn, 1),

i.e. L := {(αn+u, αn−u) : |u| < αn}. An up/right path from (1, 1) to ((α+β)n, (α+
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β)n) passes through a point on L. Considering the up/right path from (1, 1) to a

point on L and the down/left path from ((α + β)n, (α + β)n) to the same point on

L (see Figure 5.1), we find that G((α + β)n, (α + β)n) equals

(5.12) max
|u|<αn

(
G(1)(αn+ u, αn− u) +G(2)(βn+ u, βn− u)

)
+ Err,

where G(1) and G(2) are two independent copies of G, and the error term Err comes

from the duplicate diagonal term w(αn+ u, αn− u).

Figure 5.1: Intersection of an up/right path with L

Consider G(i)(αn + u, αn− u) as a process in time u. For u of order n2/3, it was

shown in [52] that the fluctuations of this process converge the Airy process in the

functional convergence. More precisely, if we set

(5.13) H(1)
n (t) :=

G(1)(αn+ d−1(αn)2/3t, αn− d−1(αn)2/3t)− µαn
σ(αn)1/3

,

and

(5.14) H(2)
n (t) :=

G(2)(βn+ d−1(βn)2/3t, βn− d−1(βn)2/3t)− µβn
σ(βn)1/3

,

for |t| < d(αn)1/3, where d := q1/6(1 +
√
q)−2/3, then H

(i)
n (t) converges to the Airy

process Â(i)(t) = A(i)(t)− t2, i = 1, 2. (We note that there is a typographical error in

the formula (1.8) in [52] where, in terms of our notations, σ is changed to
q1/6(1+

√
q)1/3

1−q .

However, the correct formula of σ is
q1/6(1+

√
q)1/3

1−√q as in (5.11) which is also same as
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in [50].) Note that the error term in (5.12) Err = O((log n)1+ε) with probability 1

as N tends to infinity for any ε > 0, therefore

lim
N→∞

P
(
G(N,N)− µN

σN1/3
≤ x

)
= lim

N→∞
P
(

max
|t|<dαn1/3

(
α1/3H(1)

n (α−2/3t) + β1/3H(2)
n (β−2/3t)

)
≤ (α + β)1/3x

)
.

(5.15)

We obtain (5.4) if we prove that

lim
n→∞

P
(

max
|t|<dαn1/3

(
α1/3H(1)

n (α−2/3t) + β1/3H(2)
n (β−2/3t)

)
≤ (α + β)1/3x

)
= P

(
max
t∈R

(
α1/3Â(1)(α−2/3t) + β1/3Â(2)(β−2/3t)

)
≤ (α + β)1/3x

)
.

(5.16)

In [52], a similar identity

(5.17) lim
n→∞

P
(

max
|t|<dn1/3

Hn(t) ≤ x

)
= P

(
max
t∈R
Â(t) ≤ x

)
was proved as a part of the proof of (5.1). We proceed similarly and use the estimates

obtained in [52] .

Set

Xn,T := (α + β)−1/3 ·max
|t|≤T

(
α1/3H(1)

n (α−2/3t) + β1/3H(2)
n (β−2/3t)

)
(5.18)

and

Yn,T := (α + β)−1/3 ·max
|t|>T

(
α1/3H(1)

n (α−2/3t) + β1/3H(2)
n (β−2/3t)

)
.(5.19)

Since

P(Xn,T ≤ x)

≥ P
(

max
|t|<dαn1/3

(
α1/3H(1)(α−2/3t) + β1/3H(2)

n (β−2/3t)
)
≤ (α + β)1/3x

)
≥ P(Xn,T ≤ x)− P(Yn,T > x)

(5.20)

for all large enough n for each fixed T , (5.16) follows from the following three prop-

erties:
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(a) For each ε > 0, there are positive constants T0 and n0 such that P (Yn,T > x) < ε

for all T > T0 and n > n0,

(b) For each fixed T , P (Xn,T ≤ x)→ P (AT ≤ x) as n→∞.

(c) Finally, P(AT ≤ s)→ P(A∞ ≤ x) as T →∞.

Here

AT := (α + β)−1/3 ·max
|t|≤T

(
α1/3Â(1)(α−2/3t) + β1/3Â(2)(β−2/3t)

)
(5.21)

and A∞ is the same random variable with the maximum taken over t ∈ R.

A functional limit theorem to the Airy process was proved in [52] (Theorem 1.2).

This means that H
(i)
n (t)→ Â(i)(t) at n→∞ in the sense of weak convergence of the

probability measures on C[−T, T ] for each fixed T . Hence the property (b) follows

a theorem on the convergence of product measures ([21], Theorem 3.2).

The property (c) follows from the monotone convergence theorem since {A∞ ≤

s} = ∩T>0{AT ≤ s}.

For the property (a), we use the estimates (5.19) and (5.20) in [52]: there are

positive constants C and c such that

P
(

max
T<t≤logn

H(i)
n (α−2/3t) > M

)
≤
∫ ∞
α−2/3T−1

e−c(M−1+x2)3/2

dx+ C

∫ ∞
α−2/3T−1

e−x
3

dx

(5.22)

and

(5.23) P
(

max
t≥logn

H(i)
n (α−2/3t) > M

)
≤ Cne−c(logn)3

for all M . Therefore, taking M = α−1/3(α + β)1/3s/2, for any ε > 0, we have

(5.24) P
(

(α + β)−1/3 max
t≥T

α1/3H(i)
n (α−2/3t) >

s

2

)
<
ε

2
,

if T, n are both large enough. This proves (a).
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5.3 Proof of (5.6)

5.3.1 Two Lemmas on the DLPP Model with i.i.d.Geometric Random Variables

Consider the following DLPP model: each site (i, j), i, j ∈ Z+ is associated with an

i.i.d. random geometric variable with parameter 1− q, i.e., P(w(i, j) = k) = (1− q)qk

for k = 0, 1, · · · . Define

(5.25) HN(t) :=
G(N + d−1N2/3t, N − d−1N2/3t)− µN

σN1/3

for all |t| < dN1/3, and

(5.26) H̃N(t) :=
G(N − 2d−1N2/3t, N)− µ(N − d−1N2/3t)

σN1/3

for all t < dN1/3

2
. Here d = q1/6(1 +

√
q)−2/3, and µ, σ are defined in (5.11). It is well

known that

(5.27) HN(t)→ Â(t)

in any fixed interval [−T, T ] in the sense of weak star topology on C[−T, T ].

We need the following two lemmas about HN and H̃N :

Lemma V.4. Suppose 0 < λ < 1 be any fixed constant. For any ε > 0, x ∈ R, there

exist some constant N0 := N0(ε, λ, x) and M0 := M0(ε, λ, x) such that

(5.28) P
(

max
|t|>M

(HN(t) + λt2) > x

)
< ε

for arbitrary N ≥ N0,M ≥M0.

Lemma V.5. For any fixed T , we have

(5.29) lim
N→∞

H̃N(t)→ Â(t)

in [−T, T ], in sense of weak star topology on C[−T, T ].
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Proof of Lemma V.4. The case when λ = 0 is proven in [52]. And it is possible to

modify the proof for the case λ ∈ (0, 1). However, we use a different technique to

prove this lemma. This specific DLPP model has a called Gibbs property of point

to diagonal line last passage time, which is proven in [30] by using the techniques

developed by [29]. It claims that if we have three collinear points (K1,M1), (K2,M2)

and (K3,M3), (K1 < K2 < K3), then

P

(
max

j∈[K1,
1
2

(K1+K2)]
G(N − j,N + j) ≥M1

)

≤ 2P (G(N +K2, N −K2) ≥M2) + P (G(N +K3, N −K3) ≤M3) ,

(5.30)

where c ∈ (0, 1) is any fixed constant. We will use this property to prove Lemma

V.4.

Consider the following collinear points

(d−1N2/3t, µN + σN1/3(x− λ(t+ 1)2)),

(d−1N2/3(t+ 2), µN + σN1/3(x− λ+ 2

3
(t+ 1)2)),

(d−1N2/3(t+ 6), µN + σN1/3(x− (2− λ)(t+ 1)2)).

(5.31)

By using (5.30), we have

P
(

max
d−1N2/3t≤s≤d−1N2/3(t+1)

G(N + s,N − s) ≥ µN + σN1/3(x− λ(t+ 1)2)

)
≤ 2P

(
G(N + d−1N2/3(t+ 2), N − d−1N2/3(t+ 2)) ≥ µN + σN1/3(x− λ+ 2

3
(t+ 1)2))

)
+ P

(
G(N + d−1N2/3(t+ 6), N − d−1N2/3(t+ 6)) ≥ µN + σN1/3(x− (2− λ)(t+ 1)2)

)
.

(5.32)

The following tail estimate of HN(s) is known (Claim 5.7 [52])

(5.33) P (HN(s) ≥ y) ≤ e−c(y+s2)3/2

for all s2 + y ≥ M1 and N ≥ N1, where M1, N1 are both large enough and c :=
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c(M1, N1) is a positive constant which only depends on M1, N1. Therefore

P
(
G(N + d−1N2/3(t+ 2), N − d−1N2/3(t+ 2)) ≥ µN + σN1/3(x− λ+ 2

3
(t+ 1)2))

)
≤ e−c(x+ 1−λ

3
(t+2)2)3/2

.

(5.34)

Suppose t ≤ logN . By Theorem 1.1 [10] we have when N is large enough (N ≥ N2

for example)

(5.35) P
(
HN(t+ 6) ≤ −y − (t+ 6)2

)
≤ e−c

′y3

uniformly for y ∈ [L, δN2/3] and t ≤ logN , where L is a constant independent of N ,

and c′ is a positive constant independent of t. Therefore

(5.36) P
(
HN(t+ 6) ≤ x− (2− λ)(t+ 1)2

)
≤ e−c

′((2−λ)(t+1)2−(t+6)2−x)3

if (2− λ)(t+ 1)2 − (t+ 6)2 − x > L. Note λ < 1, (2− λ)(t+ 1)2 − (t+ 6)2 − x > L

always holds if t ≥M1 ≥M2 = M2(λ, x).

By plugging (5.34) and (5.36) into (5.32) we have

P
(

max
t≤s≤t+1

HN(s) + λ(t+ 1)2 ≥ x

)
≤ 2e−c(x+ 1−λ

3
(t+2)2)3/2

+ e−c
′((2−λ)(t+1)2−(t+6)2−x)3

(5.37)

for arbitrary N ≥ max{N1, N2} and M1 ≤ t ≤ logN . Hence

(5.38)

P
(

max
M1≤t≤logN

(HN(s) + λt2) ≥ x

)
≤

∞∑
t=M1

(
2e−c(x+ 1−λ

3
(t+2)2)3/2

+ e−c
′((2−λ)(t+1)2−(t+6)2−x)3

)
for all N ≥ max{N1, N2} and M1 ≥ M2(λ, x). Since the above sum is bounded,

there exists M3 = M3(ε, λ, x) such that

(5.39) P
(

max
M≤t≤logN

(HN(t) + λt2) ≥ x

)
≤ ε

2
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for all N ≥ max{N1, N2} and M ≥M3.

Now we apply (5.33) again,

(5.40) P
(

max
t≥logN

(HN(t) + λt2) ≥ x

)
≤ Ne−c(x+(1−λ)(logN)2)3/2 ≤ ε

2

when N ≥ N3 = N3(ε, λ, x).

(5.39) and (5.40) imply that

(5.41) P
(

max
t≥M

(HN(t) + λt2) ≥ x

)
≤ ε

for all M ≥M4(ε, λ, x) and N ≥ N4(ε, λ, x).

By symmetry Lemma V.4 follows.

Proof of Lemma V.5. In [30], the authors proved the so-called uniform slow decor-

relation, which asserts that H̃N(t) −HN(t) → 0 uniformly in [−T, T ] as N tends to

infinity. Therefore Lemma V.5 follows immediately from the uniform slow decorre-

lation and (5.27).

For this specific case, we give an independent proof. This proof can be modified

to prove the uniform slow decorrelation mentioned above, see [30] for more details.

Define

(5.42)

H(N,−)(t) :=
G(N − d−1N2/3(2T + t), N − d−1N2/3(2T − t))− µ(N − 2d−1N2/3T )

σN1/3
,

and

(5.43)

H(N,+)(t) :=
G(N + d−1N2/3(2T − t), N + d−1N2/3(2T + t))− µ(N + 2d−1N2/3T )

σN1/3

for all t ∈ [−T, T ]. By (5.27), both processes H(N,±) are tight. Together with the

slow decorrelation property [28] we have the following: for any given ε, γ > 0, there
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exist δ > 0 and an integer N0 such that

(5.44) P
(

max
|t|,|s|≤T,|s−t|≤δ

|H(N,±)(t)−H(N,±)(s)| ≥ γ

)
≤ ε

hold for all N > N0. Here the two indices ± are not necessary the same.

Now we compare H̃N with H(N,±). Note that

G(N − 2d−1N2/3t, N) ≥ G(N − d−1N2/3(2T + t), N − d−1N2/3(2T − t))

+G(N−d−1N2/3(2T+t),N−d−1N2/3(2T−t))(N − 2d−1N2/3t, N),

(5.45)

where G(i,j)(i
′, j′) denotes the point to point last passage time from the site (i, j) to

the site (i′, j′). Together with (5.35) we immediately obtain

(5.46) P
(
H̃N(t)−H(N,−)(t) ≤ −γ

)
≤ e−cγ

3N1/3

uniformly for t ∈ [−T, T ] and N large enough.

Similarly we have

(5.47) P
(
H̃N(t)−H(N,+)(t) ≥ γ

)
≤ e−cγ

3N1/3

uniformly for t ∈ [−T, T ] and N large enough. These two inequalities and (5.44)

imply the tightness of H̃N(t). Note that (5.29) holds in the sense of finite dimensional

distribution [28]. Therefore it holds in the sense of functional limit.

5.3.2 The Proof of (5.6) by Using Lemmas V.4 and V.5

Now we prove (5.6). We only prove the case when k = 1. The case when k > 1 is

similar.

Consider the point to point last passage time from (1, 1) to (N,N+1) in the DLPP

model with entries w(i, j), which are independent geometric random variables with

parameter 1 − √q(1 − 2wσ−1N−1/3) (if j = N + 1) and 1 − q (if j = 1, 2, · · · , N).
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This model has been considered in [6, 47] and the limiting fluctuation of G(N,N+1)

is given by

(5.48) lim
N→∞

P
(
G(N,N + 1)− µN

σN1/3
≤ x

)
= F spiked

st (x;w).

Now we evaluate G(N,N+1) in a different way. Note that any directed path from

(1, 1) to (N,N+1) will intersect the line {(i, N)|i = 1, 2, · · · , N}. Then G(N,N+1)

can be written as

(5.49) G(N,N + 1) = max
i=1,2,··· ,N

(G(i, N) + SN+1−i)

where SN+1−i := w(i, N+1)+ · · ·+w(N,N+1) is the sum of (N+1−i) i.i.d. random

geometric variables. Therefore

(5.50) P
(
G(N,N + 1)− µN

σN1/3
≤ x

)
= P

(
max

t∈[0, dN
1/3

2
]

H̃N(t) + PN(t) ≤ x

)
,

where

(5.51) PN(t) :=
S1+2d−1tN2/3 − µd−1N2/3

σN1/3
.

Note that by Donsker’s Theorem, we have

(5.52) PN(t)→
√

2B̂(t)

in any fixed interval [0, T ] in the sense of weak star topology on C[0, T ], as N tends

to infinity.

Similarly to the proof of (5.4), it is easy to show (5.6) follows from Lemma

V.5, (5.52) and the following claim.

Claim V.6. (a) For any ε > 0 and λ ∈ (0, 1), there exist positive constants T0 and

N0 such that

(5.53) P
(

max
t≥T

(
H̃N(t) + λt2

)
>
x

2

)
< ε
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for all T > T0 and N > N0.

(b) For any ε > 0, there exist positive constants T1 and N1 such that

(5.54) P
(

max
t≥T

(
PN(t)− λt2

)
>
x

2

)
< ε

for all T > T1 and N > N1.

The rest is to prove the Claim V.6. (b) is easy by the property of shifted Brownian

motion, so we leave it as an exercise. For part (a), the key idea is to compare H̃N(t)

with HN(t), where HN(t) is defined in (5.25) in the DLPP model with random

i.i.d. geometric entries such that the entry at (i, j), 1 ≤ i, j ≤ N, is exact w(i, j).

Since

G(N − d−1N2/3t, N + d−1N2/3t)

≥ G(N − 2d−1N2/3t, N) + G̃(N−2d−1N2/3t,N)(N − d−1N2/3t, N + d−1N2/3t),

(5.55)

where G̃(i,j)(i
′, j′) denotes the point to point last passage time from the site (i, j) to

the site (i′, j′) in the DLPP model with random i.i.d. geometric entries with parameter

1− q, we immediately have

P
(

max
t≥T

(H̃N(s) + λt2) >
x

2

)
≤ P

(
max
t≥T

(HN(t) + λt2) >
x

2
− 1

)
+ P

(
min

T≤t≤ dN1/3

2

(
G̃(N−2d−1N2/3t,N)(N − d−1N2/3t, N + d−1N2/3t)− µdN2/3t

)
≤ −σN

1
3

)
.

(5.56)

On the other hand, the lower tail estimate (5.35) implies

P

(
min

T≤t≤ dN1/3

2

(
G̃(N−2d−1N2/3t,N)(N − d−1N2/3t, N + d−1N2/3t)− µdN2/3t

)
≤ −σN

1
3

)

≤ Nc′e−N
c′

(5.57)

for large enough N , where c, c′ are both positive constant independent of N . Com-

bining the above estimate and Lemma V.4, we obtain (5.53).
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Graphs II: Eigenvalue spacing and the extreme eigenvalues. Comm. Math. Phys., 314(3):587–
640, 2012.

[40] Michael E. Fisher and Robert E. Hartwig. Toeplitz Determinants: Some Applications, Theo-
rems, and Conjectures, pages 333–353. John Wiley & Sons, Inc., 2007.

[41] Athanassios S. Fokas, Alexander R. Its, Andrei A. Kapaev, and Victor Yu. Novokshenov.
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