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MULTIPOINT DISTRIBUTION OF TASEP

BY ZHIPENG LIUa

Department of Mathematics, University of Kansas, azhipeng@ku.edu

Recently Johansson and Rahman obtained the limiting multitime distri-
bution for the discrete polynuclear growth model (Johansson and Rahman
(2019)), which is equivalent to a discrete TASEP model with step initial con-
dition. In this paper, we obtain a finite time multipoint distribution formula
of continuous TASEP with general initial conditions in the space-time plane.
We evaluate the limit of this distribution function when the times go to infin-
ity at the same speed for both step and flat initial conditions. These limiting
distributions are expected to be universal for all the models in the Kardar–
Parisi–Zhang universality class.
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1. Introduction. In the recent twenty years, there has been an explosive development
in understanding the universal law behind a family of 2d random growth models [3, 10, 13,
19, 27–29, 32, 35, 41, 42]. There is a growing number of models which are either proved
or believed to be in the so-called Kardar–Parisi–Zhang (KPZ) universality class. All of these
models share the scaling limits t : t2/3 : t1/3 for the time, spatial correlation length and fluc-
tuation order. Moreover, the scaled limiting space-time field is believed to be universal and
independent of the models, but only depends on the initial condition

(1) lim
T →∞

H(c1xT 2/3, c2τT ) − c3τT

c4T 1/3 = H(x, τ ).

Here c1, c2, c3 and c4 are model-dependent constants, H(y, t) is the height function of the
growth model at location y and time t , and H(x, τ ) is the limiting space-time field depending
only on the initial condition. This limiting field H(x, τ ) is believed to be universal. It was
first characterized by Matetski, Quastel and Remenik [35] as a Markov process with explicit
transition probabilities and variational formulas by analyzing the totally asymmetric simple
exclusion process (TASEP). It could also be characterized by the so-called directed landscape
which was constructed by Dauvergne, Ortmann and Virág [19] more recently in the context of
Brownian last passage percolation. We remark that the characterization in [19] does not imply
explicit formulas (like the ones we consider here) for the distribution functions of H(x, τ ).
Understanding the limiting field H(x, τ ) is a fundamental problem in the community.

It has been shown that, for a number of models in the KPZ universality class, the one
point distributions of H(x, τ ) are given by the Tracy–Widom distributions and their analogs.
See [1–3, 11, 27, 42] for the standard initial conditions and [15, 18, 39] for general initial
conditions. We refer the readers to a review paper [16].

The spatial process H(x, τ ) when τ is fixed, is only obtained for TASEP and its equivalent
models. See [4, 12–14, 26, 28, 37] for the standard initial conditions and [35] for general
initial condition. We also refer the readers to a review paper [38] for the limiting processes.

Along the time direction, or more generally in the space-time field H(x, τ ), much less
was known until recently. For a standard initial condition, the so-called step initial condition,
the two-point distribution along the time direction was obtained by [29, 30] for Brownian
directed percolation and geometric last-passage percolation, and very recently, the multipoint
distribution along the time direction was also found by [32] for the same geometric last-
passage percolation model. We remark that the geometric last-passage percolation model
is equivalent to a discrete TASEP. Besides these distribution formulas, there are also some
results on the properties of H(x, τ ) at two different times, see [17, 20–22, 24, 25, 31].

Parallelly, in the line of research [6–8, 33], the authors studied the continuous TASEP on
a periodic domain (periodic TASEP). They obtained the finite time multipoint distributions
of the height function in the space-time plane, and their limits in the so-called relaxation
time scale. Since the periodic TASEP becomes the usual TASEP on Z when the period tends
to infinity, it is expected that their results, after taking the large period limit or equivalently
the small time limit, should give the limiting multipoint distributions of H(x, τ ) for TASEP.
However, it seems quite complicated to obtain the TASEP limits using asymptotic analysis
directly from the formulas in [7, 8]. The multipoint distribution formulas involve contour
integrals of a complicated Fredholm determinant which is defined on a discrete space (in
terms of the so-called Bethe roots). The classic steepest descent method seems not working
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well: there are terms of large contributions in the integrand, which combined together are
expected to cancel out when evaluated via the outside contour integrals. It is still unclear how
to manage these cancellations.

This paper can be viewed as an extension of the work [7, 8]. Instead of performing asymp-
totic analysis, we rewrite the algebraic structure of their finite time multipoint distribution
formulas when the period is finite but larger than a fixed number. This rewriting is construc-
tive: We construct a new formula for contour integrals whose integrand is a type of summa-
tion over nested roots of functions satisfying certain conditions, and prove the new formula
by induction.

The main results of this paper are as follows.

(1) We obtain the finite time multipoint distribution of TASEP in the space-time plane.
See Theorem 2.1. This result generalizes the well-known multipoint distribution of TASEP
along the space direction [13].

(2) For two specific initial conditions, the step and flat initial conditions, we evaluate the
limit of the above multipoint distributions when the times go to infinity proportionally. See
Theorems 2.19 and 2.22. These formulas are expected to be the multipoint distributions of
the universal field H(x, τ ) in (1) for the step and flat initial conditions.

We remark that our formula of the multipoint distribution of TASEP for the step initial
condition is different from that in [32] of geometric last-passage percolation. We expect that,
when the times are different, our formula matches theirs. But we do not have a rigorous proof
at the moment due to the complexity of both formulas.

Below is the organization of this paper.
In Section 2, we present the multipoint distribution formula of TASEP in Theorem 2.1, and

the limiting multipoint distributions for step and flat initial conditions in Theorems 2.19 and
2.22. We also discuss some properties of the finite time distribution formula in Section 2.1.3.

In Section 3, we introduce the periodic TASEP model. We claim that the multipoint distri-
butions for periodic TASEP, when the period is larger than a finite number, can be expressed
as the same formula for TASEP in Theorem 2.1. See Theorem 3.2. Therefore Theorem 2.1
follows.

In Section 4, we extract the key part in the proof of Theorem 3.2. We investigate a type
of summation, which we call Cauchy-type summation, over a set of nested roots of certain
functions. The main result of this section is given in Proposition 4.3, which is also the main
technical part of the paper.

The remaining sections are the proofs. Section 5 is the proof of Theorem 3.2 by using the
results of Section 4. Section 6 is the proof of Proposition 4.3. Section 7 is the only section
involving the asymptotic analysis. It includes the proof of Theorems 2.19 and 2.22. Finally
in Section 8, we prove some properties of the finite time multipoint distributions discussed in
Section 2.

2. Main results. We consider the totally asymmetric simple exclusion process (TASEP)
on the infinite lattice Z. Each site on Z allows at most one particle. The evolution of the
system is as follows. Each particle is assigned an independent clock which rings after an
exponential waiting time with parameter 1. Once its assigned clock rings, the particle either
moves to its right neighboring site if that site is unoccupied, or stays on its current site if its
right neighboring site is occupied. Meanwhile the clock is reset.

We assume that initially there are N particles and they are labeled from right to left. The
location of the ith particle at time t is denoted by xi(t). We denote X(t) := (x1(t), . . . , xN(t))

the configuration of particle locations at time t for any t ≥ 0. We also denote XN the set of
all possible configurations

XN := {
(x1, . . . , xN) ∈ Z

N : x1 > · · · > xN

}
.
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Then X(t) ∈ XN for all t ≥ 0. We also denote Y = (y1, . . . , yN) the initial configuration

yi = xi(0), i = 1, . . . ,N.

2.1. Multipoint distribution of TASEP with general initial configuration. The main result
in this paper is about the multipoint distribution of TASEP.

THEOREM 2.1. Assume Y = (y1, . . . , yN) ∈ XN . Consider TASEP with initial particle
locations xi(0) = yi for 1 ≤ i ≤ N . Let m ≥ 1 be a positive integer and (k1, t1), . . . , (km, tm)

be m distinct points in {1, . . . ,N} × [0,∞). Assume that 0 ≤ t1 ≤ · · · ≤ tm. Then, for any
integers a1, . . . , am,

PY

(
m⋂

�=1

{
xk�

(t�) ≥ a�

})

=
∮

· · ·
∮ [

m−1∏
�=1

1

1 − z�

]
DY (z1, . . . , zm−1)

dz1

2π iz1
· · · dzm−1

2π izm−1
,

(2)

where PY denotes the probability given X(0) = Y , the contours of integration are counter-
clockwise circles centered at the origin and of radii less than 1. The function DY (z1, . . . ,

zm−1) is defined in terms of a Fredholm determinant in Definition 2.4, or equivalently in
terms of series expansion in Definition 2.7.

REMARK 2.2. We expect that when all t�’s are equal, the above formula matches the
joint distribution formula in [13]. For m = 1, we are able to confirm it in a formal way. See
the discussions in Section 2.1.3.3. We leave the general case for a possible future project.

The proof follows directly from Theorem 3.1 and Theorem 3.2.
It turns out that the right-hand side of (2) is still a probability distribution function up to a

sign, if we assume some z� circles are of radii greater than 1. More precisely, we have

PROPOSITION 2.3. Assume the same setting with Theorem 2.1. Let I be any subset of
{1, . . . ,m − 1}, and J = {1, . . . ,m} \ I . Then, for any integers a1, . . . , am,

PY

((⋂
j∈J

{
xkj

(tj ) ≥ aj

})∩
(⋂

i∈I

{
xki

(ti) < ai

}))

= (−1)|I |
∮

· · ·
∮ [

m−1∏
�=1

1

1 − z�

]
DY (z1, . . . , zm−1)

dz1

2π iz1
· · · dzm−1

2π izm−1
,

(3)

where the contours of integration are counterclockwise circles centered at the origin. The
radius of z� contour is smaller than 1 if � ∈ J , and greater than 1 if � ∈ I . The function
DY (z1, . . . , zm−1) is defined in terms of a Fredholm determinant in Definition 2.4, or equiva-
lently in terms of series expansion in Definition 2.7.

The proof of Proposition 2.3 is given in Section 8.1.
Below we first introduce the Fredholm determinant representation of DY in Section 2.1.1.

In Section 2.1.2, we will give an alternate formula of DY in terms of a series expansion.
Finally, in Section 2.1.3, we will discuss some further properties of the function DY .
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FIG. 1. Illustration of the contours for m = 2: The two rectangles from left to right are �L and �R, the three
contours around −1 from outside to inside are �out

2,L,�1,L,�in
2,L respectively, the three contours around 0 from

outside to inside are �out
2,R,�1,R,�in

2,R respectively. S1 is the union of the three dashed contours, and S2 is the
union of the three solid contours.

2.1.1. Fredholm determinant representation of DY (z1, . . . , zm−1). We will define the
term DY (z1, . . . , zm−1) as a Fredholm determinant det(I − K1KY ). Such Fredholm deter-
minant representation is not unique. There are different choices of the spaces, measures, and
kernels. We will see this fact later in Section 2.1.3. At this moment, we choose a specific
choice of spaces, measures and kernels for the Fredholm determinant representation.

2.1.1.1. Spaces of the operators. We will define the operators on two specific spaces of
nested contours with complex measures depending on z = (z1, . . . , zm−1), where z� �= 1 for
each 1 ≤ � ≤ m − 1.

Suppose �L and �R are two simply connected regions on the complex plane such that (1)
�L contains the point −1, (2) �R contains the point 0, and (3) �L and �R do not intersect.

Suppose �out
m,L, . . . ,�out

2,L, �1,L, �in
2,L, . . . ,�in

m,L are 2m − 1 nested simple closed con-
tours, from outside to inside, in �L enclosing the point −1. Similarly, �out

m,R, . . . ,�out
2,R, �1,R,

�in
2,R, . . . ,�in

m,R are 2m − 1 nested simple closed contours, from outside to inside, in �R en-
closing the point 0. See Figure 1 for an illustration of the contours. These contours are all
counterclockwise oriented. In fact, throughout this paper, all closed contours will be counter-
clockwise oriented and we will not emphasize the orientations later. However, we will clearly
state the orientations for the infinite contours.

We define

(4) ��,L := �out
�,L ∪ �in

�,L, ��,R := �out
�,R ∪ �in

�,R, � = 2, . . . ,m,

and

S1 := �1,L ∪ �2,R ∪ · · · ∪
{
�m,L, if m is odd,

�m,R, if m is even,

and

S2 := �1,R ∪ �2,L ∪ · · · ∪
{
�m,R, if m is odd,

�m,L, if m is even.

We also introduce a measure on these contours. Let

(5) dμ(w) = dμz(w) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−z�−1

1 − z�−1

dw

2π i
, w ∈ �out

�,L ∪ �out
�,R, � = 2, . . . ,m,

1

1 − z�−1

dw

2π i
, w ∈ �in

�,L ∪ �in
�,R, � = 2, . . . ,m,

dw

2π i
, w ∈ �1,L ∪ �1,R.
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2.1.1.2. Operators K1 and KY . Now we introduce the operators K1 and KY to de-
fine DY (z1, . . . , zm−1) in Theorem 2.1. We assume that Y = (y1, . . . , yN) ∈ XN and z =
(z1, . . . , zm−1) is the same as in Section 2.1.1.1. Let

Q1(j) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − zj , if j < m is odd,

1 − 1

zj−1
, if j is even,

1, if j = m is odd,

Q2(j) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − zj , if j < m is even,

1 − 1

zj−1
, if j > 1 is odd,

1, if j = m is even, or j = 1.

(6)

DEFINITION 2.4. We define

DY (z1, . . . , zm−1) = det(I −K1KY ),

where two operators

K1 : L2(S2,dμ) → L2(S1,dμ), KY : L2(S1,dμ) → L2(S2,dμ)

are defined by their kernels

(7) K1
(
w,w′) := (

δi(j) + δi

(
j + (−1)i

)) fi(w)

w − w′ Q1(j),

and

(8) KY

(
w′,w

) :=
⎧⎪⎨⎪⎩
(
δj (i) + δj

(
i − (−1)j

)) fj (w
′)

w′ − w
Q2(i), i ≥ 2,

δj (1)fj

(
w′)K(ess)

Y

(
w′;w), i = 1,

for any w ∈ (�i,L ∪ �i,R) ∩S1 and w′ ∈ (�j,L ∪ �j,R) ∩S2 with 1 ≤ i, j ≤ m. Here K(ess)
Y is

a kernel defined in Definition 2.6. The function

(9) fi(w) :=

⎧⎪⎪⎨⎪⎪⎩
Fi(w)

Fi−1(w)
, w ∈ �L \ {−1},

Fi−1(w)

Fi(w)
, w ∈ �R \ {0},

with

Fi(w) :=
{
wki (w + 1)−ai−ki etiw, i = 1, . . . ,m,

1, i = 0,

for all w ∈ (�L \ {−1}) ∪ (�R \ {0}).

2.1.1.3. Kernel K(ess)
Y . For any fixed λ = (λ1, . . . , λN) ∈ Z

N with λ1 ≥ · · · ≥ λN ≥ 0, we
define

(10) Gλ(W) := det[w−j
i (wi + 1)λj ]Mi,j=1

det[w−j
i ]Mi,j=1

,

where W = {w1, . . . ,wM} is a set of size M ≥ N . We also set λi = 0 if i > N . It is easy to
see that Gλ(W) is a symmetric polynomial of w1, . . . ,wM . In fact, this symmetric function is
closely related to the Grothendieck polynomial [36] and inhomogeneous Schur polynomials
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[9]. It also appears naturally in the periodic TASEP [8]. See [8, 9, 36] for more discussions
on this symmetric function.

Suppose the number of variables M is greater than the degree of the polynomial |λ| :=∑
j λj , then Gλ(W) can be uniquely expressed in terms of power sum symmetric polynomials

(11) Gλ(W) = 1 + ∑
μ=(μ1,...)

cλ,μpμ(W),

where the μ sum is over all possible vector μ = (μ1, . . .) with positive and weakly decreas-
ing coordinates μk such that |μ| ≤ |λ|, and the polynomial pμ(W) := ∏

k(
∑M

i=1 w
μk

i ). The
constant 1 comes from evaluating Gλ(W) at w1 = · · · = wM = 0. It is also easy to see that
the coefficients cλ,μ only depend on λ and μ but not M .

DEFINITION 2.5. We define χλ(v, u) by the following explicit formula:

(12) χλ(v, u) = 1 + ∑
μ=(μ1,...)

cλ,μp̂μ(v, u),

where

p̂μ(v, u) :=∏
k

(
uμk − vμk

)
.

An alternate definition of χλ(v, u) is as follows, with ξ = e
2π i
M defined as the M th root of

unity,

(13) χλ(v, u) = Gλ
(
u, vξ, vξ2, . . . , vξM−1)

provided M > |λ|. The equivalence of (13) and (12) follows from a direct evaluation of (11)
when W = {u, vξ, vξ2, . . . , vξM−1}, by using the simple fact that uμk + ∑M−1

j=1 (vξj )μk =
uμk − vμk since μk ≤ |μ| ≤ |λ| < M .

A similar calculation when M ≤ |λ| gives

(14) χλ(v, u) = Gλ
(
u, vξ, vξ2, . . . , vξM−1)+ vM · r(v, u),

where r(v, u) is some polynomial of v and u with degree no more than |λ|−M . This formula
will be used later in Lemma 5.5 in Section 5.1 to analytically extend an analogous function
for periodic TASEP, and in Section 2.1.3.2 to evaluate the kernels for flat initial condition.

DEFINITION 2.6. We define

K(ess)
Y (v, u) = 1

v − u
·
(

u + 1

v + 1

)yN+N

· χλ(Y )(v, u),

where λ(Y ) = (λ1, . . . , λN) with λi = (yi + i) − (yN + N).

It is obvious that K(ess)
Y (v, u) is a kernel analytic for v ∈ �R and for u ∈ �L \ {−1}. It

is possible that K(ess)
Y (v, u) has a pole at u = −1 if yN + N < 0. We use the superscript to

emphasize that K(ess)
Y is the essential part containing the information of the initial condition

Y in the bigger kernel KY . See equation (8).
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2.1.2. Series expansion formula for DY (z1, . . . , zm−1). We introduce an alternate defini-
tion of DY (z1, . . . , zm−1) in terms of series expansion.

We assume the contours �out
�,L,�in

�,L,�out
�,R,�in

�,R, for 2 ≤ � ≤ m and �1,L, �1,R are the

same as in Section 2.1.1.1, K(ess)
Y (v, u) is the same as in Definition 2.6. We also introduce

some notation:

�(W) := ∏
i<j

(wj − wi)

for any vector W = (w1,w2, . . . ,wn). For two vectors W = (w1, . . . ,wn) and W ′ =
(w′

1, . . . ,w
′
n′), or sets W = {w1, . . . ,wn} and W ′ = {w′

1, . . . ,w
′
n′ }, we define

�
(
W ;W ′)=

n∏
i=1

n′∏
i′=1

(
wi − w′

i′
)
.

Moreover, if a function f is well defined on each component of a vector W = (w1, . . . ,wn),
or each element of a set W = {w1, . . . ,wn}, we define

f (W) =
n∏

i=1

f (wi).

We comment that in the above notation, we allow the empty product and set an empty product
to be 1.

Finally, we recall that ��,L = �out
�,L ∪ �in

�,L, ��,R = �out
�,R ∪ �in

�,R for 2 ≤ � ≤ m as in (4),
and the measure dμ(w) = dμz(w) as in (5).

DEFINITION 2.7 (Alternate definition of DY ). We have an alternate definition of DY

below

(15) DY (z1, . . . , zm−1) := ∑
n∈(Z≥0)

m

1

(n!)2Dn,Y (z1, . . . , zm−1)

with n! = n1! · · ·nm! for n = (n1, . . . , nm). Here

Dn,Y (z1, . . . , zm−1)

=
m∏

�=1

n�∏
i�=1

∫
��,L

dμz
(
u

(�)
i�

) ∫
��,R

dμz
(
v

(�)
i�

)

·
[
(−1)n1(n1+1)/2 �(U(1);V (1))

�(U(1))�(V (1))
det

[
K(ess)

Y

(
v

(1)
i , u

(1)
j

)]n1
i,j=1

]

·
[

m∏
�=1

(�(U(�)))2(�(V (�)))2

(�(U(�);V (�)))2 f�

(
U(�))f�

(
V (�))]

·
[

m−1∏
�=1

�(U(�);V (�+1))�(V (�);U(�+1))

�(U(�);U(�+1))�(V (�);V (�+1))
(1 − z�)

n�

(
1 − 1

z�

)n�+1
]

(16)

and the functions f� are defined in (9). The vectors U(�) and V (�) are given by U(�) =
(u

(�)
1 , . . . , u

(�)
n� ), V (�) = (v

(�)
1 , . . . , v

(�)
n� ) for � = 1, . . . ,m.

REMARK 2.8. The above formula of DY (z1, . . . , zm−1) is in terms of an infinite sum.
However, it is not hard to prove that when any n� > N , the integral on the right-hand side
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of (16) is zero. Thus, the summation actually only runs for finitely many terms. Here is the
reason in brief: Any term in the expansion of �(V (�)) = det[(v(�)

i )j−1]n�

i,j=1 will give some

(v
(�)
i )n�−1 factor. The order n� − 1 ≥ N is greater than or equal to the order of poles from

any consecutive fi factors at 0 (there might be poles from v
(�)
i = v

(�+1)
i′ = v

(�+2)
i′′ = · · · or

v
(�)
i = v

(�−1)
i′ = v

(�−2)
i′′ = · · · ). Thus, the multiple integral around 0 will be zero. This proof is

similar to that of Proposition 2.12 so we omit the details.

The equivalence of the two definitions of DY (z1, . . . , zm−1) in Definition 2.4 and Defini-
tion 2.7 follows from a general statement below.

PROPOSITION 2.9. Let �1, . . . ,�m be disjoint sets in C and let H = L2(�1 ∪ · · · ∪
�m,μ) for some measure μ. Let �̂1, . . . , �̂m be disjoint sets in C and let Ĥ = L2(�̂1 ∪ · · · ∪
�̂m, μ̂) for some measure μ̂. Let A be an operator from Ĥ to H and B an operator from
H to Ĥ, both of which are defined by kernels. Suppose A and B have the following block
structures:

• For any (w, ŵ) ∈ �i × �̂j

A(w, ŵ) =
⎧⎪⎨⎪⎩

fi(w)f̂j (ŵ)

w − ŵ
, if 2s − 1 ≤ i, j ≤ 2s for some integer s ≥ 1,

0, otherwise.

• For any (ŵ,w) ∈ �̂j × �i

B(ŵ,w) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ĝj (ŵ)gi(w)

ŵ − w
, if 2s ≤ i, j ≤ 2s + 1 for some integer s ≥ 1,

ĝ1(ŵ)g1(w)H(ŵ,w), if i = j = 1,

0, otherwise.

Assume that the Fredholm determinant det(I − AB) is well defined and is equal to the usual
Fredholm determinant series expansion. Then

det(I − AB) = ∑
n∈(Z≥0)

m

1

(n!)2

m∏
�=1

n�∏
i�=1

∫
��

dμ
(
w

(�)
i�

) m∏
�=1

n�∏
i�=1

∫
�̂�

dμ̂
(
ŵ

(�)
i�

)

·
[
(−1)n1(n1+1)/2 �(W(1); Ŵ (1))

�(W(1))�(Ŵ (1))
det

[
H
(
ŵ

(1)
i ,w

(1)
j

)]n1
i,j=1

]

·
[

m∏
�=1

(�(W(�)))2(�(Ŵ (�)))2

(�(W(�); Ŵ (�)))2
f�

(
W(�))g�

(
W(�))f̂�

(
Ŵ (�))ĝ�

(
Ŵ (�))]

·
[

m−1∏
�=1

�(W(�);W(�+1))�(Ŵ (�); Ŵ (�+1))

�(W(�); Ŵ (�+1))�(Ŵ (�);W(�+1))

]
,

where n = (n1, . . . , nm). The notation |n| := n1 + · · · + nm and n! := n1! · · ·nm!. The vectors
W(�) = (w

(�)
1 , . . . ,w

(�)
n� ), Ŵ (�) = (ŵ

(�)
1 , . . . , ŵ

(�)
n� ) for � = 1, . . . ,m.

PROOF. The proof when H(ŵ,w) = 1
ŵ−w

was proved in [7], and the general H case
was proved in [8]. See Section 4.3 of [7] for the proof with this special H . Although their
proof was presented for specific choices of contours �̂i , �i , measures dμ,dμ̂ and functions
fi, gi, f̂i, ĝi , it holds for this proposition by replacing their specific choices to the general
settings. Hence, we do not provide details here. �
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2.1.3. Further discussion on DY . In this section, we mainly discuss the function DY . We
will show that there are various formulas for DY . In the definition 2.7 of DY , we may use
a different nesting order of the contours, or modify the kernels in the Fredholm determinant
representation. Especially we could replace K(ess)

Y , which contains the information of the

initial condition, by a more general form K(ess)
Y (v, u) + K(null)(v, u) as long as K(null)(v, u)

satisfies certain conditions. These are discussed in Propositions 2.10, 2.11 and 2.12. We will
also discuss one identity which K(ess)

Y satisfies, see Proposition 2.13.
In Section 2.1.3.2, we write down the explicit formulas of DY when Y is either the step or

the flat initial condition. These formulas will be used later to evaluate the limiting multitime
distributions for these two initial conditions.

Then we verify, in a formal way, that the function DY for m = 1 matches the known result
of the one point distribution formula. This will be given in Section 2.1.3.3.

Finally, we prove two identities about DY which will be used in our proofs later.
We remark that throughout this section, the propositions are proved by only using the

definition of DY . We will use these propositions in the proof of other statements in the paper.

2.1.3.1. About the formula of DY . As we mentioned before (see the first paragraph of Sec-
tion 2.1.1), there are different Fredholm determinant representations (and the corresponding
series expansions) for DY .

We first show that the spaces of the Fredholm operators could be different. More explicitly,
the nesting order of the contours, if we adjust the measure appropriately, does not affect DY

in the definition.

PROPOSITION 2.10. Let �̃out
1,L, . . . , �̃out

m−1,L, �̃m,L, �̃in
m−1,L, . . . , �̃in

1,L be 2m − 1 nested

simple closed contours, from outside to inside, in �L enclosing the point −1. Let �̃�,L :=
�̃out

�,L ∪ �̃in
�,L for 1 ≤ � ≤ m − 1. We define the measure dμ̃(w) on �̃�,L in the following way:

dμ̃(w) = dμ̃z(w) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

1 − z�

dw

2π i
, w ∈ �̃out

�,L, � = 1, . . . ,m − 1,

−z�

1 − z�

dw

2π i
, w ∈ �̃in

�,L, � = 1, . . . ,m − 1,

dw

2π i
, w ∈ �̃m,L.

Then DY (z1, . . . , zm−1) is invariant if we replace all the ��,L contours and the associated
measure dμ(w) to �̃�,L and dμ̃(w). We define the �̃�,R contours in �R enclosing 0 and
dμ̃(w) on �̃�,R in a similar way. Then DY (z1, . . . , zm−1) is also invariant if we replace all
the ��,R contours and the associated measure dμ(w) to �̃�,R and dμ̃(w).

The above proposition indicates that we could flip the order of the nested contours and the
associated measure accordingly without changing the value of DY (z1, . . . , zm−1). We remark
that we only considered the case when the contour with the smallest or largest label lies in
the middle of the contours and the remaining contours are nested in the order of their labels,
but it is possible to put any contour ��,L or ��,R at the center or consider nested contours in
arbitrary order. But the associated measures are not as neat as dμ or dμ̃. It is not clear how
these other different orders benefit the evaluation of DY (z1, . . . , zm−1) either. Hence, we do
not discuss it in details.

The proof of Proposition 2.10 is provided in Section 8.2.
Now we consider the Fredholm determinant kernels in DY . Obviously the Fredholm de-

terminant is invariant if we apply a conjugation to the kernels. Furthermore, we can modify
the functions Fi’s (hence, the functions fi ’s accordingly) as well.
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PROPOSITION 2.11. DY (z1, . . . , zm−1) is invariant if we replace the function Fi(w) by
F̃i(w) = ciFi(w) for any nonzero numbers c1, . . . , cm. It is also invariant if we shift all the
yi ’s and ai ’s by the same integer constant c.

PROOF. We first consider the change Fi(w) → ciFi(w). This will change fi(u) →
ci

ci−1
fi(u) for u ∈ �L \ {−1} and fi(v) → ci−1

ci
fi(v) for v ∈ �R \ {0} by the definition of

fi in (9). Here we set c0 = 1. Now we consider the series expansion formula (15) of DY .
The nth term Dn,Y is invariant under the above changes since f�(U

(�))f�(V
(�)) has the same

number of factors c�

c�−1
and c�−1

c�
whose product is 1.

Now we consider the case when we shift all yi and ai by the same constant c. This
change does not affect the functions f� for � > 1, and f1(u) → f1(u) · (u + 1)−c,
f1(v) → f1(v) · (v + 1)c for u ∈ �L \ {−1} and v ∈ �R \ {0}. On the other hand, by the
definition of K(ess)

Y (v, u) in (2.6) we know that K(ess)
Y (v, u) → K(ess)

Y (v, u)(1+u
1+v

)c. Thus

f1(U
(1))f1(V

(1))det[K(ess)
Y (v

(1)
i , u

(1)
j )]n1

i,j=1 is unchanged. �

It is more challenging to understand K(ess)
Y (v, u), which encodes the initial condition Y in

DY . It is possible to show that DY does not depend on the explicit formula of K(ess)
Y (v, u),

but only depends on the value of

〈f,g〉Y :=
∮

0

dv

2π i

∮
−1

du

2π i
f (v)K(ess)

Y (v, u)g(u)

for functions f and g satisfying vmax{k�:�=1,...,m}f (v) and (u + 1)max{k�+a�:�=1,...,m}g(u)

are analytic at 0 and −1 respectively, where the above contours of integration are suffi-
ciently small. In other words, f (g, respectively) is meromorphic in a neighborhood of
0 (−1, respectively) with a possible pole at 0 (−1, respectively) and its order is at most
max{k� : � = 1, . . . ,m} (max{k� + a� : � = 1, . . . ,m}, respectively). Hence, the true role of
K(ess)

Y (v, u) is to determine the above bi-linear form. We do not want to fully explain it here
in details since it involves the orthogonalization of eigenfunctions and convergence of formal
expansions in terms of orthogonal basis. Instead, we provide a lighter version below.

PROPOSITION 2.12. DY (z1, . . . , zm−1) is invariant if we replace the kernel K(ess)
Y (v, u)

by K(ess)
Y (v, u) +K(null)(v, u) provided K(null) satisfies either conditions (1) or (2).

(1) For each fixed u ∈⋃m
�=1 ��,L, K(null)(v, u) is analytic for v ∈ �R \ {0}. Moreover, for

all i ≤ max{k� : � = 1, . . . ,m} and all j ,∮
0

dv

2π i

∫
��

�,L

du

2π i
v−iK(null)(v, u)(u + 1)−j = 0

for each 1 ≤ � ≤ m, and � is any of {out, in} if � ≥ 2, or empty if � = 1.
(2) For each fixed v ∈ ⋃m

�=1 ��,R, K(null)(v, u) is analytic for u ∈ �L \ {−1}. Moreover,
for all all j ≤ max{a� + k� : � = 1, . . . ,m} and all i,∫

��
�,R

dv

2π i

∮
−1

du

2π i
v−iK(null)(v, u)(u + 1)−j = 0

for each 1 ≤ � ≤ m, and � is any of {out, in} if � ≥ 2, or empty if � = 1.

The proof of Proposition 2.12 is given in Section 8.3.
We could understand Proposition 2.3 in the following probabilistic way. Note the fact

that the distribution function itself only depends on part of the initial data. More explicitly,
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this distribution function is independent of yi ’s with i > max{k� : � = 1, . . . ,m} since these
particles do not affect the particles ahead of them. Similarly the distribution function is inde-
pendent of yi ’s with yi + i > max{a� + k� : � = 1, . . . ,m} by using the duality of particles
and empty sites. The conditions (1) and (2) above precisely indicate these independence.

By the proposition above, we know that there are many choices of choosing a kernel to
replace K(ess)

Y (v, u) in the definition of DY . It may happen that one needs to pick the appropri-
ate kernel to obtain the asymptotics of DY . We will see this fact for the flat initial condition.
Nevertheless, the kernel K(ess)

Y (v, u) defined in Definition 2.6 has the following property.

PROPOSITION 2.13. K(ess)
Y (v, u) is a kernel satisfying

(17)
∮

0
v−i (v + 1)yi+i ·K(ess)

Y (v, u)
dv

2π i
= −u−i (u + 1)yi+i

for all i = 1, . . . ,N .

The proof of Proposition 2.13 is given in Section 8.4.
Note that (17) has infinitely many solutions. Formally, for each fixed u, (17) is a system

of N linear equations of infinitely many variables v. However, each solution KY (v,u), if it is
analytic in �R × (�L \ {−1}), can be expressed as

KY (v,u) =K(ess)
Y (v, u) +K(null)(v, u)

where K(null)(v, u) := KY (v,u) −K(ess)
Y (v, u) satisfies

(18)
∮

0
v−i ·K(null)(v, u)

dv

2π i
= 0

for all integers i satisfying i ≤ N . The reason of (18) is as follows. We first write v−i =∑i
j=1 ci,j v

−j (v + 1)yj +j +Pj (v), where ci,j are constants determined by comparing the co-

efficients of v−j in both sides, and Pj is a polynomial. Then (18) follows from the following
facts: ∮

0
v−j (v + 1)yj+j ·KY (v,u)

dv

2π i
=
∮

0
v−j (v + 1)yj+j ·K(ess)

Y (v, u)
dv

2π i

= −u−j (u + 1)yj+j , 1 ≤ j ≤ i ≤ N,

and ∮
0
Pj (v) ·KY (v,u)

dv

2π i
=
∮

0
Pj (v) ·K(ess)

Y (v, u)
dv

2π i
= 0

due to the analyticity of KY (v,u) and K(ess)
Y (v, u) at v = 0.

Now by applying Proposition 2.12 and the equation (18), we know that DY is invariant
if we replace K(ess)

Y (v, u) by any kernel which is analytic in �R × (�L \ {−1}) and satisfies
(17).

2.1.3.2. DY for step and flat initial conditions. We consider two special initial conditions
and write down their formulas of DY explicitly. These formulas are suitable for asymptotic
analysis and will be used in Section 7.

The first initial condition we consider is the so-called step initial condition. It is defined to
be

Ystep = (y1, . . . , yN) = (−1, . . . ,−N).
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In this case λ(Ystep) = (0, . . . ,0) since λi = (yi + i) − (yN + N) = 0. By (10) we have
Gλ(Ystep)(W) = 1. Now using Definitions 2.5 and 2.6, we know χλ(Ystep)(v, u) = 1 and

K(ess)
Ystep

(v, u) = 1
v−u

. Therefore

DYstep(z1, . . . , zm−1) = det(I −K1KYstep)

with

K1
(
w,w′) := (

δi(j) + δi

(
j + (−1)i

)) fi(w)

w − w′ Q1(j)

and

KYstep

(
w′,w

) := (
δj (i) + δj

(
i − (−1)j

)) fj (w
′)

w′ − w
Q2(i)

for any w ∈ (�i,L ∪ �i,R) ∩ S1 and w′ ∈ (�j,L ∪ �j,R) ∩ S2 with 1 ≤ i, j ≤ m. Here the
spaces �i,L,�i,R,S1,S2 and functions fi,Q1,Q2 are the same as in Definition 2.4. One
could similarly write down the series expansion of DYstep(z1, . . . , zm−1). It is given by

DYstep(z1, . . . , zm−1) := ∑
n∈(Z≥0)

m

1

(n!)2Dn,Ystep(z1, . . . , zm−1)

with

Dn,Ystep(z1, . . . , zm−1)

=
m∏

�=1

n�∏
i�=1

∫
��,L

dμz
(
u

(�)
i�

) ∫
��,R

dμz
(
v

(�)
i�

)

·
[

m∏
�=1

(�(U(�)))2(�(V (�)))2

(�(U(�);V (�)))2 f�

(
U(�))f�

(
V (�))]

·
[

m−1∏
�=1

�(U(�);V (�+1))�(V (�);U(�+1))

�(U(�);U(�+1))�(V (�);V (�+1))
(1 − z�)

n�

(
1 − 1

z�

)n�+1
]
.

The second initial condition we consider here is the so-called pseudo-flat initial condition.
It is defined to be

Ypf = (y1, . . . , yN) = (−2, . . . ,−2N).

In other words, yi = −2i for all 1 ≤ i ≤ N . For this pseudo-flat initial condition, we have the
following result for K(ess)

Ypf
.

PROPOSITION 2.14. If |v| < 1/2 and |v| < |u + 1|, we have

K(ess)
Ypf

(v, u) = 2v + 1

(v − u)(u + v + 1)
+ vNp(v,u)

for some function p(v,u) which is analytic for (v, u) when |v| < min{1/2, |u + 1|}.

The proof of Proposition 2.14 is given in Section 8.5.
By applying Propositions 2.12 and 2.14, we could replace K(ess)

Ypf
by the kernel 2v+1

(v−u)(u+v+1)

if we choose the contours appropriately such that �1,R is within the disk D(1/2) = {v : |v| <
1/2} and �1,L is outside of −1 − �1,R := {−1 − v : v ∈ �1,R}. However, we could further
reduce it to a delta kernel which makes the formula of DYpf(z1, . . . , zm−1) even simpler.
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In order to introduce the new formula, we need to slightly modify the contours. Let
�out

m,L, . . . ,�out
2,L, �1,L, �in

2,L, . . . ,�in
m,L are 2m − 1 nested simple closed contours, from out-

side to inside, in �L = {w ∈ C : Re(w) < −1/2} enclosing the point −1, and �out
m,R, . . . ,�out

2,R,
�1,R, �in

2,R, . . . ,�in
m,R are 2m − 1 nested simple closed contours, from outside to inside,

in �R = {w ∈ C : Re(w) > −1/2} enclosing the point 0. We further assume that �1,L =
−1 − �1,R.

PROPOSITION 2.15. Suppose the parameters satisfy max{a� + k� : � = 1, . . . ,m} ≤ 0.
Then

DYpf(z1, . . . , zm−1) = det(I −K1KYpf),

where two operators

K1 : L2(S2,dμ) → L2(S1,dμ), K(1)
Yflat

: L2(S1,dμ) → L2(S2,dμ)

are defined by their kernels

K1
(
w,w′) := (

δi(j) + δi

(
j + (−1)i

)) fi(w)

w − w′ Q1(j)

and

KYpf

(
w′,w

) :=
⎧⎪⎨⎪⎩
(
δj (i) + δj

(
i − (−1)j

)) fj (w
′)

w′ − w
Q2(i), i ≥ 2,

δj (1)fj

(
w′)δ(−w′ − 1,w

)
, i = 1,

for any w ∈ (�i,L ∪�i,R)∩S1 and w′ ∈ (�j,L ∪�j,R)∩S2 with 1 ≤ i, j ≤ m. The definitions
of S1,S2, fi , Q1,Q2 are the same as in Definition 2.4, with the further assumption �1,L =
−1 − �1,R as described before, and the δ(−w′ − 1,w) is a delta kernel defined by∫

�1,L

δ(−v − 1, u)g(u)
du

2π i
= g(−v − 1)

for any function g ∈ L2(�1,L, du
2π i) and any v ∈ �1,R.

The proof of Proposition 2.15 is given in Section 8.6. We remark that the assumption
max{a� + k� : � = 1, . . . ,m} ≤ 0 is reasonable. In terms of TASEP, if we view empty
sites as “white particles” and original particles as “black particles,” then the dynamics of
TASEP becomes exchanging two neighboring particles with “black” and “white” colors
(“black”,“white” change to “white”, “black”). xk�

(t�) + k� ≥ a� + k� > 0 means that the
k�th “black particle” has already met some “white particles” initially located at Z≥0. In
other words, the location of this k�th particle is affected by some initial condition which
is outside of the “flat” region. In this case, we do not expect a same formula as that for
max{a� + k� : � = 1, . . . ,m} ≤ 0.

It turns out that we could drop the assumption max{a� + k� : � = 1, . . . ,m} ≤ 0 if we
consider the flat initial condition

Yflat = (· · · , y−2, y−1, y0, y1, y2, . . .) with yi = −2i, i ∈ Z.

Here we allow the labels of particles to be negative. This follows from a translation on the
labels and locations of particles in Proposition 2.15 and then let N be sufficiently large. More
explicitly, we have the following proposition.
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PROPOSITION 2.16. Suppose we consider TASEP with the flat initial condition Yflat.
Assume m ≥ 1 is an integer. Suppose a�, k� are integers for each � = 1, . . . ,m, and t1, . . . , tm
are real numbers satisfying 0 ≤ t1 ≤ · · · ≤ tm. Then

PYflat

(
m⋂

�=1

{
xk�

(t�) ≥ a�

})

=
∮

· · ·
∮ [

m−1∏
�=1

1

1 − z�

]
·DYflat(z1, . . . , zm−1)

dz1

2π iz1
· · · dzm−1

2π izm−1
,

(19)

where the contours of integration are circles centered at the origin and of radii less than 1.
The function DYflat(z1, . . . , zm−1) has the same formula as DYpf(z1, . . . , zm−1) defined in
Proposition 2.15, without the restriction max{a� + k� : � = 1, . . . ,m} ≤ 0.

PROOF. When k� ≥ 1 and a� + k� ≤ 0 for all �, it is easy to see, similarly to the argument
after Proposition 2.15, that the event {xk�

(t�) ≥ a�} only depends on part of the initial condi-
tion yi = −2i satisfying i ≤ k� and i ≥ −a� − k� + 1. Note that −a� − k� + 1 ≥ 1. Both Ypf
and Yflat contain this part of the initial condition if we choose N ≥ max{k� : � = 1, . . . ,m}.
Thus, we know

PYflat

(
m⋂

�=1

{
xk�

(t�) ≥ a�

})= PYpf

(
m⋂

�=1

{
xk�

(t�) ≥ a�

})
.

Then (19) follows from Proposition 2.15. Note that although Ypf depends on N , the formula
of DYpf is independent of N .

More generally, we know that the left-hand side is invariant under the translation
(a�, k�) → (a� − 2c, k� + c) for all �. Here c is any fixed integer. By choosing sufficiently
large c, we have a� − 2c + k� + c ≤ 0 and k� + c ≥ 1 for all �. Thus it is sufficient to show
that the right hand side of (19) is also invariant under such a translation. Below we show this
by using series expansion of DYflat .

Similarly to the general initial condition case, we could write down the series expansion
of DYflat . It is given by

DYflat(z1, . . . , zm−1) := ∑
n∈(Z≥0)

m

1

(n!)2Dn,Yflat(z1, . . . , zm−1)

with
Dn,Yflat(z1, . . . , zm−1)

=
m∏

�=1

n�∏
i�=1

∫
��,L

dμz
(
u

(�)
i�

) ∫
��,R

dμz
(
v

(�)
i�

)

·
[
(−1)n1(n1+1)/2 �(U(1);V (1))

�(U(1))�(V (1))
det

[
δ
(−v

(1)
i − 1, u

(1)
j

)]n1
i,j=1

]

·
[

m∏
�=1

(�(U(�)))2(�(V (�)))2

(�(U(�);V (�)))2 f�

(
U(�))f�

(
V (�))]

·
[

m−1∏
�=1

�(U(�);V (�+1))�(V (�);U(�+1))

�(U(�);U(�+1))�(V (�);V (�+1))
(1 − z�)

n�

(
1 − 1

z�

)n�+1
]
.

(20)

Note that f�(u) = uk�−k�−1(u + 1)−(a�+k�)+(a�−1+k�−1)e(t�−t�−1)u for u ∈ �L and f�(v) =
u−k�+k�−1(v + 1)(a�+k�)−(a�−1+k�−1)e−(t�−t�−1)u for v ∈ �R are both invariant under the trans-
lation described above if � ≥ 1. When � = 1, we have f1(u) = uk1(u + 1)−(a1+k1)et1u →
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uc(u + 1)cf1(u) and f1(v) = v−k1(v + 1)a1+k1e−t1v → v−c(v + 1)−cf1(v). Due to the delta
kernel δ(−v − 1, u), we know that the expansion of Dn,Yflat(z1, . . . , zm−1) contains paired

factor
∏n1

i1=1 f1(u
(1)
i1

)f1(v
(1)
σ (i1)

) with ui1 = −1 − v
(1)
σ (i1)

for some σ ∈ Sn1 . This factor is in-

variant since (u
(1)
i1

)c(u
(1)
i1

+ 1)c(v
(1)
σ (i1)

)−c(v
(1)
σ (i1)

+ 1)−c = 1. These discussions imply that
Dn,Yflat(z1, . . . , zm−1), hence DYflat(z1, . . . , zm−1) as well, are invariant under the translation.
This finishes the proof. �

2.1.3.3. DY when m = 1. As we mentioned in Remark 2.2, we expect that the multipoint
distribution formula (2) at equal times matches the known result of [13]. We are not able to
verify it at this moment, but we can formally obtain their formula when m = 1.

Consider DY when m = 1. In this case, DY does not have any z� variables and itself gives
the one point distribution PY (xk(t) ≥ a) (by setting a1 = a, k1 = k and t1 = t). By using a
conjugation, we could write

PY

(
xk(t) ≥ a

)= DY = det(I − K)|�2(Z≤a−1)

with

(21) K(x,y) = −
∮

0

dv

2π i

∮
−1

du

2π i
v−k(v + 1)y+ke−tv ·K(ess)

Y (v, u) · uk(u + 1)−x−k−1etu.

It is not hard (by using the Gram–Schmidt process) to prove that there exists a system of
“orthogonal functions” ei(v), i = k, k − 1, . . . ,−∞, such that∮

0

dv

2π i
ei(v) · v−j (v + 1)yj+j = δi(j), for all i, j ≤ k.

Thus, formally we could write

v−k(v + 1)y+ke−tv = ∑
j≤k

(∮
0

dv′

2π i
ej

(
v′)(v′)−k(

v′ + 1
)y+k

e−tv′
)

· v−j (v + 1)yj+j .

By plugging it in (21) and then applying Proposition 2.13, also noting
∮

0 v−j (v + 1)yj+j ×
K(ess)

Y (v, u) dv
2π i = 0 if j ≤ 0 due to the analyticity of K(ess)

Y (v, u) on v, we obtain

K(x,y) =
k∑

j=1

�j(x)�j (y)

with

�j(x) =
∮
−1

du

2π i
uk−j (u + 1)−x−k−1+yj+j etu,

�j (x) =
∮

0

dv

2π i
ej (v)v−k(v + 1)x+ke−tv.

Formally, we could verify the following orthogonality by using the above integral represen-
tation and the definition of ej :∑

x∈Z
�j(x)�i(x) = δi(j), for all i, j ≤ k.

This formulation is consistent with the one point case of the joint distribution formula ob-
tained in [13]. We remark that the above calculations are formal since we did not consider
the convergence issue.
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2.1.3.4. Two identities about DY . We end this section with two identities about DY , which
will be used to prove Proposition 2.3 and Theorem 3.2, respectively. These identities involve
the DY function with different number of variables and parameters. Hence, we write

DY (z1, . . . , zm−1) = DY

(
z1, . . . , zm−1; (a1, k1, t1), . . . , (am, km, tm)

)
to emphasize the parameters if needed.

PROPOSITION 2.17. For any fixed s satisfying 1 ≤ s ≤ m − 1,∮
|zs |<1

1

1 − zs

DY (z1, . . . , zm−1)
dzs

2π izs

−
∮
|zs |>1

1

1 − zs

DY (z1, . . . , zm−1)
dzs

2π izs

= DY

(
z1, . . . , zs−1, zs+1, . . . , zm−1; (a1, k1, t1), . . . , (as−1, ks−1, ts−1),

(as+1, ks+1, ts+1), . . . , (am, km, tm)
)

holds when all other z� �= 1, � = 1, . . . , s − 1, s + 1, . . . ,m − 1, are fixed. Here we remind
that the parameters for DY (z1, . . . , zm−1) are (a�, k�, t�) for 1 ≤ � ≤ m.

PROPOSITION 2.18. If as + ks = min{a� + k� : 1 ≤ � ≤ m} < yN + N , then∮
|zm−1|<1

1

1 − zm−1
DY (z1, . . . , zm−1)

dzm−1

2π izm−1

= DY

(
z1, . . . , zm−2; (a1, k1, t1), . . . , (am−1, km−1, tm−1)

)
if s = m, and∮

|zs |<1

1

1 − zs

DY (z1, . . . , zm−1)
dzs

2π izs

= DY

(
z1, . . . , zs−1, zs+1, . . . , zm−1; (a1, k1, t1), . . . , (as−1, ks−1, ts−1),

(as+1, ks+1, ts+1), . . . , (am, km, tm)
)

if 1 ≤ s ≤ m − 1.

The proofs of Proposition 2.17 and 2.18 are given in Sections 8.7 and 8.8, respectively.

2.2. Limit theorems for TASEP with step or flat initial conditions. As an application of
Theorem 2.1, we compute the multipoint limiting distribution of TASEP with two classic
initial conditions: the step initial condition and the flat initial condition. We will state the
result in terms of the height function of TASEP. Denote H the space of all possible functions
h : Z → Z satisfying:

1. h(x + 1) − h(x) ∈ {−1,1}, for all x ∈ Z,
2. h(0) ∈ 2Z.

It is well known that TASEP can be viewed as a growth model in H (it is called the corner
growth model). More precisely, we start from some initial function H(x,0) ∈ H, and let
H(x, t) evolve in the following way. We assign each integer site an independent clock. Once
the clock associated to some i rings, we increase H(i, t) by 2 (and keep all other H(x, t)

unchanged) if the resulting function H(x, t) is still in H, otherwise we do not change H(i, t).
Then we reset the clock. The function H(x, t) is called the height function.

One could also translate the height function H(x, t) in terms of particle locations. See
equation (74) and the discussions afterward.
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2.2.1. Step initial condition. We assume that the initial height function is given by

(22) H(x,0) = |x|, x ∈ Z.

This corresponds to the step initial condition in TASEP. Suppose m is a fixed positive integer,
(x1, τ1), . . . , (xm, τm) are m distinct points in the half space-time plane R×R>0 satisfying

τ1 ≤ τ2 ≤ · · · ≤ τm

and xi < xi+1 if τi = τi+1 for some 1 ≤ i ≤ m − 1. Suppose h1, . . . , hm are m fixed real
numbers.

THEOREM 2.19. Assume the parameters m and x�, τ�, h� (� = 1, . . . ,m) are described
above. With the initial condition (22), we have

lim
T →∞P

(
m⋂

�=1

{
H(2x�T

2/3,2τ�T ) − τ�T

−T 1/3 ≤ h�

})

= Fstep
(
h1, . . . , hm; (x1, τ1), . . . , (xm, τm)

)
,

where the function Fstep is given by

Fstep
(
h1, . . . , hm; (x1, τ1), . . . , (xm, τm)

)
=
∮

· · ·
∮ [

m−1∏
�=1

1

1 − z�

]
Dstep(z1, . . . , zm−1)

dz1

2π iz1
· · · dzm−1

2π izm−1

(23)

with z = (z1, . . . , zm−1), and the contours of integration are circles centered at the origin and
of radii less than 1. The function Dstep in given Definition 2.25.

REMARK 2.20. Recently, Johansson and Rahman obtained the limiting multitime dis-
tribution for discrete polynuclear growth model [32], which is the same as a discrete TASEP
with step initial condition. We expect that the above formula (23) is equivalent to their result
when τ1 < · · · < τm. However, at the moment we do not have a proof of this equivalence due
to the complexity of the formulas. We will consider this proof as a future project.

REMARK 2.21. It is well known that the limiting process along the spatial direction of
the height function of TASEP with step initial condition is given by the Airy2 process minus
a parabola [28]. Thus (23) when τ1 = · · · = τm gives a new formula of the finite dimensional
distribution function of the Airy2 process minus a parabola. However, we do not have a direct
proof that this formula is equivalent to the original one in the definition of Airy2 process.

2.2.2. Flat initial condition. We assume that the initial height function is given by

(24) H(x,0) =
{

1, x is odd,

0, x is even.

This corresponds to the flat initial condition in TASEP.

THEOREM 2.22. Assume the parameters m and x�, τ�, h� (� = 1, . . . ,m) are the same
as in Theorem 2.19. With the initial condition (24), we have

lim
T →∞P

(
m⋂

�=1

{
H(2x�T

2/3,2τ�T ) − τ�T

−T 1/3 ≤ h�

})

= Fflat
(
h1, . . . , hm; (x1, τ1), . . . , (xm, τm)

)
,
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where the function Fflat is given by

Fflat
(
h1, . . . , hm; (x1, τ1), . . . , (xm, τm)

)
=
∮

· · ·
∮ [

m−1∏
�=1

1

1 − z�

]
Dflat(z1, . . . , zm−1)

dz1

2π iz1
· · · dzm−1

2π izm−1

with z = (z1, . . . , zm−1), and the contours of integration are circles centered at the origin and
of radii less than 1. The function Dflat is given in Definition 2.26.

REMARK 2.23. Similarly to the step case, limiting process along the spatial direction of
the height function of TASEP with flat initial condition is known and it is called the Airy1
process [13, 40]. Thus our above result when τ1 = · · · = τm gives an equivalent formula for
the finite dimensional distribution function of the Airy1 process.

REMARK 2.24. Here we only considered the flat case when the particle density ρ is 1/2.
For the general flat case with an arbitrary particle density ρ, the one point limiting distribution
has been proved in [23] and it is the same as the case of ρ = 1/2. We expect the multipoint
limiting distribution for the general flat initial condition does not depend on ρ as well and our
result above holds for the general flat case.

2.2.3. Functions Dstep and Dflat. Similarly to their finite time analogs, both functions
Dstep and Dflat have different representations. Below we only provide a Fredholm determinant
representation for each function.

Denote two regions of the complex plane

CL := {
ζ ∈ C : Re(ζ ) < 0

}
, and CR := {

ζ ∈ C : Re(ζ ) > 0
}
.

We first assume that τ1 < · · · < τm. Later, we will need to bend the contours in the defini-
tion of Dstep to extend it to the case τ1 ≤ · · · ≤ τm with extra assumption that xi < xi+1 when
τi = τi+1.

Let Cout
m,L, . . . ,Cout

2,L, C1,L, Cin
2,L, . . . ,Cin

m,L be 2m − 1 “nested” contours in the region CL.
They are all unbounded contours from ∞e−2π i/3 to ∞e2π i/3. Moreover, they are located from
the right (corresponding to the superscript “out”) to the left (“in”). The superscripts “out” and
“in” should be understood with respect to the point −∞. Similarly, let Cout

m,R, . . . ,Cout
2,R, C1,R,

Cin
2,R, . . . ,Cin

m,R be 2m − 1 “nested” contours from left to right on the half plane CR. They
are from ∞e−π i/3 to ∞eπ i/3. Their superscripts “out” and “in” could be understood with
respect to the point +∞. See Figure 2 for an illustration of the contours. We remark that these
contours are limits of the contours ��

�,L and ��
�,R near the critical point −1/2, here 1 ≤ � ≤ m

and � represents the superscript out or in or empty script (when � = 1). The orientations of the

R

iR

0

FIG. 2. Illustration of the contours for m = 2: The three contours in the left half plane from left to right are
Cin

2,L,C1,L,Cout
2,L respectively, the three contours in the right half plane from left to right are Cout

2,R,C1,R,Cin
2,R

respectively. S1 is the union of the three dashed contours, and S2 is the union of the three solid contours.
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contours C�
�,R are reversed compared to the contours ��

�,R. This will lead to a sign difference
which passes to the kernel Kstep in Definition 2.25 or Kflat in Definition 2.26.

We define

C�,L := Cout
�,L ∪ Cin

�,L, C�,R := Cout
�,R ∪ Cin

�,R, � = 2, . . . ,m,

and

S1 := C1,L ∪ C2,R ∪ · · · ∪
{

Cm,L, if m is odd,

Cm,R, if m is even,

and

S2 := C1,R ∪ C2,L ∪ · · · ∪
{

Cm,R, if m is odd,

Cm,L, if m is even.

We introduce a measure on these contours in the same way as in (5). Let

dμ(ζ ) = dμz(ζ ) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−z�−1

1 − z�−1

dζ

2π i
, ζ ∈ Cout

�,L ∪ Cout
�,R, � = 2, . . . ,m,

1

1 − z�−1

dζ

2π i
, ζ ∈ Cin

�,L ∪ Cin
�,R, � = 2, . . . ,m,

dζ

2π i
, ζ ∈ C1,L ∪ C1,R.

We will define Dstep and Dflat in terms of Fredholm determinants. Recall the Q1 and Q2

functions defined in (6),

Q1(j) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − zj , if j < m is odd,

1 − 1

zj−1
, if j is even,

1, if j = m is odd,

Q2(j) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − zj , if j < m is even,

1 − 1

zj−1
, if j > 1 is odd,

1, if j = m is even, or j = 1.

DEFINITION 2.25. We define

Dstep(z1, . . . , zm−1) = det(I − K1Kstep),

where the operators

K1 : L2(S2,dμ) → L2(S1,dμ), Kstep : L2(S1,dμ) → L2(S2,dμ)

are defined by their kernels

(25) K1
(
ζ, ζ ′) := (

δi(j) + δi

(
j + (−1)i

)) fi (ζ )

ζ − ζ ′ Q1(j)

and

Kstep
(
ζ ′, ζ

) := (
δj (i) + δj

(
i − (−1)j

)) fj (ζ ′)
−ζ ′ + ζ

Q2(i)
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for any ζ ∈ (Ci,L ∪Ci,R)∩S1 and ζ ′ ∈ (Cj,L ∪Cj,R)∩S2 with 1 ≤ i, j ≤ m. Here the function

(26) fi (ζ ) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Fi(ζ )

Fi−1(ζ )
, Re(ζ ) < 0,

Fi−1(ζ )

Fi(ζ )
, Re(ζ ) > 0,

with

(27) Fi(ζ ) :=
{
e− 1

3 τiζ
3+xiζ

2+hiζ , i = 1, . . . ,m,

1, i = 0.

Now we extend the function Dstep to the case when some of the τi’s are equal. It is extended
as follows. We adjust the angles of the contours on the right half plane. We let Cout

m,R, . . . ,Cout
2,R,

C1,R, Cin
2,R, . . . ,Cin

m,R be from ∞e−π i/5 to ∞eπ i/5. We keep the contours on the left plane
unchanged. Note that this adjustment does not affect the Dstep(z1, . . . , zm−1) when all the
τi’s are different, in other words, we could have chosen these contours from the beginning but
we did not make this choice since the contours are not symmetric anymore. This asymmetry
intuitively comes from the fact that we have two different orders of xi and xi+1 when τi =
τi+1. If we choose a different choice of order, xi > xi+1 for all i satisfying τi = τi+1, we need
to bend all the contours on the left plane instead.

With this adjustment of the contours, it is easy to verify that the functions fi decay super-
exponentially fast along all these contours. The function Dstep(z1, . . . , zm−1) hence is well
defined. Moreover, since the integrand are continuous on the parameters h�, x�, τ�, 1 ≤ � ≤ m,
the function Dstep(z1, . . . , zm−1) is also continuous on these parameters in the following way.
If the parameters are continuous functions of t , more explicitly, they move along continuous
curves h�(t), x�(t), τ�(t), 1 ≤ � ≤ m, 0 ≤ t ≤ 1, satisfying τ1(t) ≤ · · · ≤ τm(t) and xi(t) <

xi+1(t) when τi(t) = τi+1(t), then Dstep(z1, . . . , zm−1) is also continuous in t .
Similarly, we first define Dflat when τ1 < · · · < τm.

DEFINITION 2.26. In order to define Dflat, we further assume that two contours C1,L
and C1,R are symmetric about the imaginary axis. In other words, C1,L = −C1,R := {−η :
η ∈ C1,R}. We define

Dflat(z1, . . . , zm−1) = det(I − K1Kflat),

where the operators

K1 : L2(S2,dμ) → L2(S1,dμ), Kflat : L2(S1,dμ) → L2(S2,dμ)

are defined by their kernels described as follows. The kernel K1 is the same as in (25), while
Kflat is defined by

Kflat
(
ζ ′, ζ

) :=
⎧⎪⎨⎪⎩
(
δj (i) + δj

(
i − (−1)j

)) fj (ζ ′)
−ζ ′ + ζ

Q2(i), i ≥ 2,

−δj (1)fj
(
ζ ′)δ(−ζ ′, ζ

)
, i = 1,

for any ζ ∈ (Ci,L ∪ Ci,R) ∩ S1 and ζ ′ ∈ (Cj,L ∪ Cj,R) ∩ S2 with 1 ≤ i, j ≤ m, where fi is the
same as in (26) and the kernel δ is a delta kernel defined by∫

C1,L

δ(−η, ξ)f (ξ)
dξ

2π i
= f (−η)

for any function f ∈ L2(C1,L,
dξ
2π i) and any η ∈ C1,R.
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The extension of Dflat to τ1 ≤ · · · ≤ τm is more complicated. We need to use the series
expansion

Dflat(z1, . . . , zm−1) := ∑
n∈(Z≥0)

m

1

(n!)2 Dn,flat(z1, . . . , zm−1)

with

Dn,flat(z1, . . . , zm−1)

=
m∏

�=1

n�∏
i�=1

∫
C�,L

dμz
(
ξ

(�)
i�

) ∫
C�,R

dμz
(
η

(�)
i�

)

·
[
(−1)n1(n1+1)/2 �(ξ (1);η(1))

�(ξ (1))�(η(1))
det

[
δ
(−η

(1)
i , ξ

(1)
j

)]n1
i,j=1

]

·
[

m∏
�=1

(�(ξ (�)))2(�(η(�)))2

(�(ξ (�);η(�)))2
f�
(
ξ (�))f�(η(�))]

·
[

m−1∏
�=1

�(ξ (�);η(�+1))�(η(�); ξ (�+1))

�(ξ (�); ξ (�+1))�(η(�);η(�+1))
(1 − z�)

n�

(
1 − 1

z�

)n�+1
]
.

(28)

Here similar to the step case, we let Cout
m,R, . . . ,Cout

2,R, C1,R, Cin
2,R, . . . ,Cin

m,R be from ∞e−π i/5

to ∞eπ i/5. We keep the contours on the left plane unchanged. Note that in this case we need
to understand the δ(−η

(1)
i , ξ

(1)
j ) in the following way since the contour C1,L is not −C1,R at

this moment.
For � ≥ 2, we write each combination of integrals as

1

1 − z�−1

∫
Cin

�,L

dξ
(�)
i�

2π i
− z�−1

1 − z�−1

∫
Cout

�,L

dξ
(�)
i�

2π i

=
∫

Cout
�,L

dξ
(�)
i�

2π i
− 1

1 − z�−1

(∫
Cout

�,L

dξ
(�)
i�

2π i
−
∫

Cin
�,L

dξ
(�)
i�

2π i

)(29)

and then expand the integrals accordingly. After writing the
∫

Cout
�,L

− ∫
Cin

�,L
as a residue evalu-

ation at ξ
(�)
i�

= ξ
(�−1)
i�−1

at some pole ξ
(�−1)
i�−1

or zero if there is no such a pole, we end with a
summation of 2n2+···+nm possible combinations, each of which is a combination of integrals
without involving the contours

∫
Cin

�,L
:

∑ ∏
some i�

�≥2

∫
Cout

�,L

dξ
(�)
i�

2π i

n1∏
i1=1

∫
C1,L

dξ
(1)
i1

2π i

·
m∏

�=2

n�∏
i�=1

[
1

1 − z�−1

∫
Cin

�,R

dη
(�)
i�

2π i
− z�−1

1 − z�−1

∫
Cout

�,R

dη
(�)
i�

2π i

]
·

n1∏
i1=1

∫
C1,R

dη
(1)
i1

2π i
.

(30)

Here we ignored the integrand which is the same as in (28) except that we evaluated the
residues for some ξ

(�)
i�

’s that are from the contours Cin
�,L. Now we bend the contour of C1,L

such that C1,L = −C1,R. Note that Cout
�,L is wider (from ∞e−2iπ/3 to ∞e2iπ/3) and always lies

outside of C1,L when we bend C1,L.
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We remark that for the parameters satisfying τ1 ≤ · · · ≤ τm and xi < xi+1 when τi =
τi+1, the integrand decays super-exponentially fast along the remaining contours. Hence,
Dflat(z1, . . . , zm−1) is well defined. It also matches Definition 2.26 since the above adjustment
of the contours does not affect the integrals when τ1 < · · · < τm.

Similarly to Dstep, the function Dflat(z1, . . . , zm−1) is also continuous on the parameters
h�, x�, τ�, 1 ≤ � ≤ m, in the following way. If the parameters are continuous functions
of t , more explicitly, they move along continuous curves h�(t), x�(t), τ�(t), 1 ≤ � ≤ m,
0 ≤ t ≤ 1, satisfying τ1(t) ≤ · · · ≤ τm(t) and xi(t) < xi+1(t) when τi(t) = τi+1(t), then
Dflat(z1, . . . , zm−1) is also continuous in t .

3. Periodic TASEP with large period. Periodic TASEP can be viewed as TASEP on a
periodic domain

XN(L) := {
(x1, . . . , xN) ∈ Z

N : xN < xN−1 < · · · < x1 < xN + L
}
,

where L is some integer larger than N . We call L the period of the system, and N is the
number of particles of the system. We label the particles from right to left, and denote x

(L)
i (t)

the location of the ith particle, 1 ≤ i ≤ N . Here the superscript (L) indicates that it is for
periodic TASEP with period L. The evolution of the system is exactly the same as TASEP,
except that the rightmost particle cannot make its jump if its distance to the leftmost particle
is exact L − 1 at the moment of attempting to jump. In other words, the rightmost particle
could also be blocked by the leftmost particle such that their distance is always less than
the period L. One could naturally make infinitely many copies of these particles and place
them in all the intervals of length L in a periodic way. With this setting, each particle moves
independently to the right and can only be blocked by its right neighboring particle, except
for the dependence from the periodicity x

(L)
i (t) = x

(L)
i+N(t)+L, i ∈ Z, t ∈ R≥0. This explains

why we call this model periodic TASEP.
Recently, Baik and Liu studied periodic TASEP in a sequence of papers [5–8, 33]. In

their most recent work [7, 8], they obtained two multipoint distribution formulas for periodic
TASEP, both of which are in terms of multiple contour integrals on the complex plane. The
two formulas differ in their integrands: One involves a Toeplitz-like determinant of large
size, with entries given by a huge summations over the so-called Bethe roots, while the other
involves a Fredholm determinant on a space of Bethe roots. They then evaluated the limit of
this multipoint distribution in the so-called relaxation time scale by using the second formula,
with certain assumptions on the initial condition. They were also able to verify that several
classic initial conditions satisfy these assumptions.

The main goal of this section is to investigate how the Fredholm determinant formula
of multipoint distribution for periodic TASEP behaves when the period becomes large. It is
known that periodic TASEP has the same dynamics as TASEP when the periodicity constraint
does not take effect. In other words, the finite time distributions of periodic TASEP should be
equal to their analogs of TASEP when the period becomes large. This is the key fact and the
starting point of this paper.

We use P
(L)
Y to denote the probability of periodic TASEP, here Y ∈ XN(L) is the initial

configuration of particle locations. We will also use PY = P
(∞)
Y to denote the probability of

TASEP with initial configuration Y ∈ XN = XN(∞).

THEOREM 3.1 ([7]). Suppose Y = (y1, . . . , yN) ∈ XN . Let L > N such that Y ∈ XN(L).
In other words, L ≥ y1 − yN + 1. Consider periodic TASEP with period L and initial con-
figuration Y , and an independent TASEP with the same initial configuration. We use x

(L)
i (t)
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and xi(t) to denote the particle locations in the two models respectively. Suppose m is a pos-
itive integer, k1, . . . , km are m integers in {1, . . . ,N}, and t1, . . . , tm are m nonnegative real
numbers. Then for any integers a1, . . . , am we have

P
(L)
Y

(
m⋂

�=1

{
x

(L)
k�

(t�) ≥ a�

})= PY

(
m⋂

�=1

{
xk�

(t�) ≥ a�

})

provided

(31) L ≥ max{a1 + k1, . . . , am + km} − yN .

Intuitively, this theorem means that if the considered particles x
(L)
� (t�) have not been de-

layed by the leftmost particle of the previous period yN + L, then the dynamics of these par-
ticles are the same as if the previous periods do not exist. An equivalent theorem which con-
siders the probability of events {x(L)

k�
(t�) ≤ a�} was given in Lemma 8.1 of [7]. The statement

we present above was also discussed there, see equations (8.5) and (8.6) after Lemma 8.1 in
[7]. We remark that the particle labels in [7] are from left to right, which is different from
this paper. Thus, one needs to change the particle labels accordingly in (8.5) and (8.6) of that
paper to match Theorem 3.1.

The above theorem implies that the formula of multipoint distribution in periodic TASEP
should be independent of the parameter L when L satisfies (31). However, the existing for-
mulas in [7, 8] all have a discrete feature and contain the parameter L. Below we provide
a new multipoint distribution formula for periodic TASEP when (31) holds. This formula is
independent of the parameter L and does not have a discrete structure involving the so-called
Bethe roots.

THEOREM 3.2 (Multipoint distribution of periodic TASEP with large period). With the
same setting as Theorem 3.1. Suppose the period L satisfies (31). Then

P
(L)
Y

(
m⋂

�=1

{
x

(L)
k�

(t�) ≥ a�

})

=
∮

· · ·
∮ [

m−1∏
�=1

1

1 − z�

]
DY (z1, . . . , zm−1)

dz1

2π iz1
· · · dzm−1

2π izm−1
,

(32)

where the contours of integration are circles centered at the origin and of radii less than 1.
The function DY (z1, . . . , zm−1) is defined in terms of a Fredholm determinant in Defini-
tion 2.4, or equivalently in terms of series expansion in Definition 2.7.

We remark that although Theorem 2.1 is the main result of the paper, technically The-
orem 3.2 is the key result. The main challenging part to obtain such a theorem is (1) to
understand why the discrete structure does not play a role in the formulas obtained in [7, 8]
when (31) holds, and (2) to find an alternate formula which preserves all other features except
for the discreteness structure. This formula is exactly the right hand side of (32). Finding this
formula is constructive: It is not obtained by taking the large L limit of periodic formulas.1

Instead, it is obtained by construction and then proved by induction.
The proof of Theorem 3.2 is given in Section 5.

1It might be able to take a large L limit and find the limit of periodic TASEP formulas. However, in our opinion,
it is the algebraic structure instead of asymptotic behavior that allows us to remove the L parameter. The condition
(31) indeed provides a hint: The lower bound of L to remove the discreteness is a finite number instead of going
to infinity.
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4. Cauchy-type summation over nested roots. This is a key portion of the proof of
Theorem 3.2. More explicitly, the main results, Propositions 4.3 and 4.4 in this section will be
used in the proof of Lemma 5.2, which is the most technical part in the proof of Theorem 3.2.
Since it is independent of the TASEP model, and it might be applicable to other problems
(see [34] for an application to find the distribution of the geodesic in the directed last passage
percolation), we put it in this separate section.

In this section, we will study a multiple sum over roots of q(w) = ẑi for some ẑi’s with
decreasing magnitudes, where q(w) is an analytic function in the considered domain with
some assumptions around its zero. Examples of such q(w) functions are q(w) = wN and
q(w) = (w + 1)L−N for one region case, or q(w) = wN(w + 1)L−N for the two-region case
which we will consider later. The summand involves factors

(33) C
(
W ;W ′) := �(W)�(W ′)

�(W ;W ′)
for some vectors W and W ′, whose coordinates will be chosen from the roots of q(w) = ẑ and
q(w) = ẑ′, respectively. The notations �(W) and �(W ;W ′) are introduced at the beginning
of Section 2.1.2. We remind that

�(W) = ∏
1≤i<j≤n

(wj − wi), �
(
W ;W ′)=

n∏
i=1

n′∏
i′=1

(
wi − w′

i′
)
,

where n and n′ are the sizes of the vectors W and W ′ respectively, and wi(1 ≤ i ≤ n), w′
i′(1 ≤

i′ ≤ n′) are the coordinates of W and W ′, respectively. Here we allow n = 0 or n′ = 0 by
defining the empty product to be 1.

Especially, when W and W ′ have the same size, C(W ;W ′) is the Cauchy determinant up
to the sign

C
(
W ;W ′)= (−1)n(n−1)/2 det

[
1

wi − w′
i′

]
1≤i≤n

1≤i′≤n′=n

.

Hence we call (33) the Cauchy-type factor, and the summation involving these factors
Cauchy-type summation.

To explicitly state the Cauchy-type summation to be considered, we introduce some nota-
tion.

Let m ≥ 1 be a fixed integer. Suppose n1, . . . , nm are nonnegative integers. We also sup-
pose W(�) = (w

(�)
1 , . . . ,w

(�)
n� ) be a vector of n� variables, 1 ≤ � ≤ m.

Assume I (1) · · · , I (m−1) and J (2), . . . , J (m) are 2m − 2 sets satisfying

(34) I (�) ⊆ {1, . . . , n�}, J (�+1) ⊆ {1, . . . , n�+1}
for each � = 1, . . . ,m − 1. We also introduce a convention that WI is a vector obtained by
keeping all the coordinates of W whose indices are in the set I and removing all other vari-
ables. For example, if W = (w1, . . . ,w10), then W{2,3} = (w2,w3). Thus by using this con-

vention, W
(�)

I (�) is a vector with coordinates in W(�) whose subscripts are in I (�), and W
(�+1)

J (�+1)

is similarly a vector with coordinates in W(�+1) whose subscripts are in J (�+1).
We will consider the following summand:

H
(
W(1), . . . ,W(m); z0, . . . , zm−1

)
:=

[
m−1∏
�=1

C
(
W

(�)

I (�);W(�+1)

J (�+1)

)] · A(W(1), . . . ,W(m); z0, . . . , zm−1
)
,

(35)
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where A is a function satisfying certain analyticity on its variables (the coordinates of all
W(�) vectors and complex numbers z�’s). Note that H defined above is dependent on the sets
I (�), J (�+1), 1 ≤ � ≤ m − 1, and the function A.

Now we introduce the space where the above summand is defined.
Let rmax ∈ (0,1) be a fixed number. We assume that z0 ∈ D(rmax ) and z� ∈ D = D(1).

Here the notation

(36) D(r) := {
z ∈ C : |z| < r

}
.

We also denote

(37) D0(r) := {
z ∈C : 0 < |z| < r

}
the punctured open disk with radius r and centered at the origin.

Suppose � is a simply connected region in the complex plane which contains 0. Let

�0 := � \ {0}.
We assume that A is an analytic function defined on (�0)

d ×D(rmax ) ×D
m−1, with d =

d(W(1), . . . ,W(m)) is the total dimension of the vectors. Here we have d = n1 + · · · + nm

since W(�) has n� coordinates.
With the above assumption, it is clear that H is analytic function on (�0)

d × D(rmax ) ×
D

m−1 except that it has poles at w
(�)
i = w

(�+1)
j for (i, j) ∈ I (�) × J (�+1) and some 1 ≤ � ≤

m − 1.
We will take the sum over discrete sets determined by a function q(w). Now we introduce

q(w) and the discrete sets.
Assume that q(w) is an analytic function of w ∈ � such that the “level curves” of q(w) in

�, the �r ’s defined below for 0 < r < rmax , are nested simple closed contours enclosing 0.
More precisely, for any 0 < r < rmax ,

(38) �r := {
w ∈ � : ∣∣q(w)

∣∣= r
}

is a simple closed contour enclosing 0, and �r encloses �r ′ if 0 < r ′ < r < rmax . We also
define

(39) Rẑ := {
w ∈ � : q(w) = ẑ

}
for any |ẑ| < rmax . It is obvious that all elements of Rẑ lie on the contour �|ẑ|. We remark
that these assumptions imply that q(0) = 0. Thus we set �0 = {0} and R0 = {0}. By using the
property that �r are nested simple closed contours for 0 < r < rmax , we know that q ′(w) �= 0
for all w ∈ Rẑ provided ẑ ∈ D0(rmax ).

Finally, we are ready to introduce the summation. We assume z0 ∈ D0(rmax ) and z� ∈ D0
for 1 ≤ � ≤ m − 1. In other words, 0 < |z0| < rmax and 0 < |z�| < 1 for 1 ≤ � ≤ m − 1. We
define

G(z0, . . . , zm−1)

:= ∑
W(1)∈Rn1

ẑ1

· · · ∑
W(m)∈Rnm

ẑm

[
m∏

�=1

J
(
W(�))] · H (

W(1), . . . ,W(m); z0, . . . , zm−1
)
,

(40)

where J is defined via q as follows:

(41) J
(
W(�)) :=

n�∏
i�=1

J
(
w

(�)
i�

) :=
n�∏

i�=1

q(w
(�)
i�

)

q ′(w(�)
i�

)
,
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and ẑ�’s are defined via z�’s:

(42) ẑ� = z0z1 · · · z�−1, 1 ≤ � ≤ m.

Note that our assumption on z�’s implies ẑ1, . . . , ẑm are m points in D0(rmax ) with decreasing
norms: 0 < |ẑm| < · · · < |ẑ1| < rmax .

Recall the definition of the function H in (35), which is analytic for z� ∈ D and for co-
ordinates of W(�)’s except for the possible poles at w

(�)
i = w

(�+1)
j . Since ẑ� are distinct for

all (z0, . . . , zm) ∈ D0(rmax ) × D
m−1
0 , and the coordinates of W(�) are roots of q(w) = ẑ�

which depends on z0, . . . , z�−1 analytically, the summand in (40) can be viewed as an an-
alytic function for (z0, . . . , zm) ∈ D0(rmax ) × D

m−1
0 . Thus, G(z0, . . . , zm−1) is analytic in

this region as well. The main goal of this section is to investigate the behavior of G when
z� → 0 and see whether the analyticity of G can be extended to the space D(rmax ) ×D

m−1.
Note that z� = 0 implies ẑ�+1 = · · · = ẑm = 0, which is not considered in the definition
G in (40). To extend the function G to z� = 0, we need to consider possible singularities:
A(W(1), . . . ,W(m); z0, . . . , zm−1) may have singularities at w

(�)
i�

= 0 ∈ R0, and the Cauchy-

type factors in H bring singularities at w
(�)
i = w

(�+1)
j . It turns out that if q(w) is a function

such that these singularities disappear, then G can be analytically extended to z� = 0 for all �.
More surprisingly, for such q(w) functions, G(0, z1, . . . , zm−1) is actually independent of q .

To explain the conditions of q such that G can be analytically extended to D(rmax )×D
m−1,

we introduce the following concepts.

DEFINITION 4.1. We call a sequence of variables w
(k)
ik

,w
(k+1)
ik+1

, . . . ,w
(k′)
ik′ a Cauchy

chain with respect to the variables W(�)’s and sets I (�), J (�)’s, if(
w

(k)
ik

− w
(k+1)
ik+1

)(
w

(k+1)
ik+1

− w
(k+2)
ik+2

) · · · (w(k′−1)
ik′−1

− w
(k′)
ik′

)
appears as a factor in the denominator of

∏m−1
�=1 C(W

(�)

I (�);W(�+1)

J (�+1) ). In other words,

(ik, ik+1) ∈ I (k) × J (k+1), (ik+1, ik+2) ∈ I (k+1) × J (k+2), . . . , (ik′−1, ik′) ∈ I (k′−1) × J (k′).

We also call any single variable w
(k)
ik

a Cauchy chain.

We remark that one important property of Cauchy chain is that it could accumulate singu-
larities of A(W(1), . . . ,W(m), z0, . . . , zm−1) at w

(�)
i�

= 0 if w
(�)
i�

is on the chain by evaluating
the residues from the Cauchy factors successively.

DEFINITION 4.2. We call q(w) dominates H(W(1), . . . ,W(m); z1, . . . , zm) at w = 0 pro-

vided that for any Cauchy chain w
(k)
ik

,w
(k+1)
ik+1

, . . . ,w
(k′)
ik′ ,

q(w) · A(W(1), . . . ,W(m); z0, . . . , zm−1
)|

w
(k)
ik

=w
(k+1)
ik+1

=···=w
(k′)
i
k′ =w

is analytic at w = 0, for any fixed other w
(�)
i�

variables in �0, and fixed (z0, . . . , zm−1) ∈
D(rmax ) ×D

m−1.

We also remark that if q(w) dominates H , then q(w)A(W(1), . . . ,W(m); z0, . . . ,

zm−1)|w(�)
i�

=w
is analytic at w = 0 since a single variable forms a Cauchy chain. In other

words, the singularities of A at each w
(�)
i�

= 0 are dominated by the order of q(w) at w = 0.

Furthermore, the total singularities of A at w
(k)
ik

= 0, w
(k+1)
ik+1

= 0, . . . ,w
(k′)
ik′ = 0 along any

Cauchy chain w
(k)
ik

,w
(k+1)
ik+1

, . . . ,w
(k′)
ik′ are dominated by the order of q(w) at w = 0.

Now we are ready to state the main proposition.
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PROPOSITION 4.3. Suppose A is analytic for each w
(�)
i�

∈ �0 and (z0, . . . , zm−1) ∈
D(rmax ) × D

m−1. Suppose q(w) is analytic for w ∈ � with the nested level curve
assumption described before. If q(w) dominates H at w = 0 as defined above, then
G(z0, . . . , zm−1) can be analytically defined for for (z0, . . . , zm−1) ∈ D(rmax )×D

m−1. More-
over, G(0, z1, . . . , zm−1) is independent of q(w), and equals

m∏
�=2

n�∏
i�=1

[
1

1 − z�−1

∫
�in

�

dw
(�)
i�

2π i
− z�−1

1 − z�−1

∫
�out

�

dw
(�)
i�

2π i

]
·

n1∏
i1=1

∫
�1

dw
(1)
i1

2π i

· H (
W(1), . . . ,W(m);0, z1, . . . , zm−1

)
,

(43)

where �out
m , , . . . ,�out

2 ,�1,�
in
2 , . . . ,�in

m , from outside to inside, are arbitrary 2m − 1 nested
simple closed contours in � each of which encloses w = 0.

Although in this proposition we only considered the case when q(w) has a root at w = 0
and q(w) dominates H at w = 0, it is easy to see (by a change of variables w → w + a) that
the same proposition holds if we consider the case when q(w) has a root at w = a and q(w)

dominates H at w = a.
The proof of Proposition 4.3 is given in Section 6. We point out that the most challenging

part of this proposition is to find the explicit expression for G(0, z1, . . . , zm−1). We actu-
ally construct the formula (43) and prove the proposition by induction. See Section 6 for
the details. Similarly to Proposition 2.10, we are able to change the nesting order of con-
tours of integration (and the z� weights accordingly) in (43) and obtain different formulas of
G(0, z1, . . . , zm−1). This fact could be proved in a similar way as in the proof of Proposi-
tion 2.10, or modifying the proof of Proposition 4.3 in Section 6 accordingly for the different
formula of G(0, z1, . . . , zm−1).

Proposition 4.3 only includes the case of one region � and one set of nested roots (or
contours) around (or enclosing, respectively) the unique root of q(w) within �. There is no
difficulty to extend it to more regions and more sets of nested contours, where each set of
contours enclose a different root of q(w). Especially for the purpose of proving Theorem 3.2,
we need a version of two regions and two sets of nested roots enclosing two different roots
−1 and 0 of the Bethe polynomial q(z), respectively. We state the result below for this use
and prove it by using Proposition 4.3.

Let �L and �R be two disjoint regions including −1 and 0, respectively. Let n�,L and n�,R,
1 ≤ � ≤ m, be 2m nonnegative integers. U(�) = (u

(�)
1 , . . . , u

(�)
n�,L) and V (�) = (v

(�)
1 , . . . , v

(�)
n�,R)

are 2m vectors. We use U , u and V , v to denote the vectors, variables associated with L and
R respectively to avoid too many scripts. This is also consistent with the notation in the series
expansions of DY in Theorem 3.2. Similar to (34), we introduce I

(�)
L , J

(�)
L and I

(�)
R , J

(�+1)
R

for each 1 ≤ � ≤ m. Then the analog of (35) is

H
(
U(1), . . . ,U(m);V (1), . . . , V (m); z0, . . . , zm−1

)
:=

[
m−1∏
�=1

C
(
U

(�)

I
(�)
L

;U(�+1)

J
(�+1)
L

)
C
(
V

(�)

I
(�)
R

;V (�+1)

J
(�+1)
R

)]

· A(U(1), . . . ,U(m);V (1), . . . , V (m); z0, . . . , zm−1
)
,

where A is a function analytic for all u
(�)
i�

in �L \ {−1}, all v
(�′)
i′
�′

∈= �R \ {0}, and all

(z0, . . . , zm−1) ∈ D(rmax ) ×D
m−1.
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Let q(w) be a function defined on �L ∪ �R such that its “level curves” in �L and �R are
nested simple closed contours enclosing −1 and 0 respectively. Note that we do not require
q(w) is well defined elsewhere. Let Rẑ,L := {u ∈ �L : q(u) = ẑ} and Rẑ,R := {v ∈ �R :
q(v) = ẑ}. We define, for (z0, . . . , zm−1) ∈ D0(rmax ) ×D

m−1
0 ,

G(z0, . . . , zm−1) = ∑
U(1)∈Rn1,L

ẑ1,L

...
U(m)∈Rnm,L

ẑm,L

∑
V (1)∈Rn1,R

ẑ1,R

...
V (m)∈Rnm,R

ẑm,R

[
m∏

�=1

J
(
U(�))J (V (�))]

· H (
U(1), . . . ,U(m);V (1), . . . , V (m); z0, . . . , zm−1

)
,

(44)

where J is defined the same way as in (41), and ẑ� as in (42).
We could similarly define the terminologies of “Cauchy chain” and “dominating”. More

explicitly, a Cauchy chain is either a sequence of variables u
(k)
ik

, u
(k+1)
ik+1

, . . . , u
(k′)
ik′ such that

(u
(k)
ik

− u
(k+1)
ik+1

) · · · (u(k′−1)
ik′−1

− u
(k′)
ik′ ) appears in the denominator of

∏m−1
�=1 C(U

(�)

I
(�)
L

;U(�+1)

J
(�+1)
L

), or

a sequence of variables v
(k)
ik

, v
(k+1)
ik+1

, . . . , v
(k′)
ik′ such that (v

(k)
ik

− v
(k+1)
ik+1

) · · · (v(k′−1)
ik′−1

− v
(k′)
ik′ )

appears in the denominator of
∏m−1

�=1 C(V
(�)

I
(�)
R

;V (�+1)

J
(�+1)
R

). We still allow that a Cauchy chain

could be a single variable. We say q dominates H at w = −1, if q(w) · A is analytic
at w = −1 when we take the variables on any u

(�)
i�

-Cauchy chain to be w but all other
variables fixed. Similarly, q dominates H at w = 0 if q(w) · A is analytic at w = 0
when we take the variables on any v

(�)
i�

-Cauchy chain to be w but all other variables
fixed.

With these setting, the two-region version of Proposition 4.3 is as follows.

PROPOSITION 4.4. Suppose A is analytic for each u
(�)
i�

in �L \ {−1}, each v�′
i′
�′

∈ �R \
{0}, and each (z0, . . . , zm−1) ∈ D(rmax ) ×D

m−1. Suppose q(w) is analytic for w ∈ �L ∪ �R

with the nested level curve assumption described above. If q(w) dominates H at w = −1 and
w = 0. Then G(z0, . . . , zm−1) can be analytically extended to D(rmax ) × D

m−1. Moreover,
G(0, z1, . . . , zm−1) is independent of q(w), and equals

m∏
�=2

n�,L∏
i�=1

[
1

1 − z�−1

∫
�in

�,L

du
(�)
i�

2π i
− z�−1

1 − z�−1

∫
�out

�,L

du
(�)
i�

2π i

]
·

n1,L∏
i1=1

∫
�1,L

du
(1)
i1

2π i

·
m∏

�=2

n�,R∏
i�=1

[
1

1 − z�−1

∫
�in

�,R

dv
(�)
i�

2π i
− z�−1

1 − z�−1

∫
�out

�,R

dv
(�)
i�

2π i

]
·

n1,R∏
i1=1

∫
�1,R

dv
(1)
i1

2π i

· H (
U(1), . . . ,U(m);V (1), . . . , V (m);0, z1, . . . , zm−1

)
,

(45)

where �out
m,L, . . . ,�out

2,L,�1,L,�in
2,L, . . . ,�in

m,L, from outside to inside, are arbitrary 2m − 1
nested simple closed contours in �L each of which encloses u = −1, and �out

m,R, . . . ,�out
2,R,

�1,R, �in
2,R, . . . ,�in

m,R, from outside to inside, are arbitrary 2m − 1 nested simple closed
contours in �R each of which encloses v = 0.
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PROOF OF PROPOSITION 4.4. It follows by applying Proposition 4.3 twice. First, for
any fixed U(�)’s, we consider

H̃
(
U(1), . . . ,U(m); z0, . . . , zm−1

)
:= ∑

V (1)∈Rn1,R
ẑ1,R

...
V (m)∈Rnm,R

ẑm,R

[
m∏

�=1

J
(
V (�))] · H (

U(1), . . . ,U(m);V (1), . . . , V (m); z0, . . . , zm−1
)
.

This function is analytic for (z0, . . . , zm−1) ∈ D(rmax ) × D
m−1 by Proposition 4.3. It is also

analytic for u
(�)
i�

∈ �L \ {−1}. Thus, we could apply Proposition 4.3 again for

G(z0, . . . , zm−1) = ∑
U(1)∈Rn1,L

ẑ1,L

...
U(m)∈Rnm,L

ẑm,L

[
m∏

�=1

J
(
U(�))] · H̃ (

U(1), . . . ,U(m); z0, . . . , zm−1
)
.

This proves the analyticity of G(z0, . . . , zm−1) in D(rmax ) × D
m−1. The formula for

G(0, z1, . . . , zm−1) follows in a similar way. �

5. Proof of Theorem 3.2. In this section, we prove Theorem 3.2. We will first reduce
the proof of the theorem to two lemmas, Lemma 5.1 and Lemma 5.2 below. Then we prove
these two lemmas in Section 5.2 and Section 5.3, respectively.

We first assume

(46) a� + k� ≥ yN + N, � = 1, . . . ,m.

We claim that it is sufficient to prove Theorem 3.2 with the above assumption. In fact, if
there exists some i such that ai + ki = min{a� + k� : 1 ≤ � ≤ m} < yN + N , then ai + ki <

yki
+ ki = xki

(0) + ki , and

P
(L)
Y

(
m⋂

�=1

{
x

(L)
k�

(t�) ≥ a�

})= P
(L)
Y

( ⋂
1≤�≤m

� �=i

{
x

(L)
k�

(t�) ≥ a�

})

since {x(L)
ki

(ti) ≥ ai} is an event with probability 1. On the other hand, by Proposition 2.18
we have∮

· · ·
∮ [

m−1∏
�=1

1

1 − z�

]
DY (z1, . . . , zm−1)

dz1

2π iz1
· · · dzm−1

2π izm−1

=
∮

· · ·
∮ [ ∏

1≤�≤m−1
� �=i

1

1 − z�

]
DY (z1, . . . , zi−1, zi+1, . . . , zm−1)

∏
1≤�≤m−1

� �=i

dz�

2π iz�

.

Thus it is sufficient to prove the statement with the index i removed. By repeating this proce-
dure and removing all such indices i, we only need to prove the statement with all indices �

satisfying (46).
From now on throughout this section, we assume (46) holds.
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It has been shown in [8] (and [7] for the case of the step initial condition) that the multipoint
distribution of periodic TASEP has an explicit formula in terms of multiple contour integrals

P
(L)
Y

(
m⋂

�=1

{
x

(L)
k�

(t�) ≥ a�

})=
∮

· · ·
∮

CY (ẑ1, . . . , ẑm)DY (ẑ1, . . . , ẑm)
dẑ1

2π iẑ1
· · · dẑm

2π iẑm

,

where the contours are nested circles centered the origin with decreasing radii 0 < |ẑm| <

· · · < |ẑ1| < rmax for some constant rmax > 0 to be determined later. The explicit formula
of CY and DY will be given in Section 5.2 and Section 5.3, respectively. By changing the
variables

(47) ẑ� =
�−1∏
j=0

zj , � = 1, . . . ,m,

where z0, z1, . . . , zm−1 are new variables satisfying |z�| < 1 for 1 ≤ � ≤ m−1 and 0 < |z0| <
rmax , we write

P
(L)
Y

(
m⋂

�=1

{
x

(L)
k�

(t�) ≥ a�

})

=
∮

· · ·
∮

C̃Y (z0, . . . , zm−1)D̃Y (z0, . . . , zm−1)
dz0

2π iz0
· · · dzm−1

2π izm−1
.

(48)

Here C̃Y (z0, . . . , zm−1) := CY (ẑ1, . . . , ẑm) and D̃Y (z0, . . . , zm−1) := DY (ẑ1, . . . , ẑm) with ẑ�

defined by (47). The contours of integration are circles centered at the origin with radii satis-
fying 0 < |z0| < rmax and |z�| < 1 for 1 ≤ � ≤ m − 1.

It turns out that the z0 integral can be evaluated explicitly in (48). The key facts are that
both functions C̃Y and D̃Y can be analytically extended to z0 = 0 and that their values at
z0 = 0 can be explicitly evaluated. These are given in the following two lemmas. We recall
that the notation D(r) in (36) and D0(r) = D(r) \ {0} in (37). When r = 1, we simply write
D and D0 for D(1) and D0(1), respectively.

LEMMA 5.1. The function C̃Y (z0, . . . , zm−1) is analytic for z0 ∈ D(rmax ) and z� ∈ D,
1 ≤ � ≤ m − 1. Moreover,

C̃Y (0, z1, . . . , zm−1) =
m−1∏
�=1

1

1 − z�

for any fixed z1, . . . , zm−1 ∈D.

LEMMA 5.2. Assume (46) and L ≥ max{a1 + k1, . . . , am + km} − yN . Then the function
D̃Y (z0, . . . , zm−1) is analytic for z0 ∈D(rmax ) and z� ∈ D0, 1 ≤ � ≤ m − 1. Moreover,

D̃Y (0, z1, . . . , zm−1) =DY (z1, . . . , zm−1)

for any fixed z1, . . . , zm−1 ∈ D0. Here the function DY (z1, . . . , zm−1) is defined in terms of
a Fredholm determinant in Definition 2.4, or equivalently in terms of series expansion in
Definition 2.7.

The proofs of these two lemmas are given in Section 5.2 and Section 5.3, respectively.



1286 Z. LIU

By applying these two lemmas above and taking the residue at z0 = 0 in (48), we write
(48) as

P
(L)
Y

(
m⋂

�=1

{
x

(L)
k�

(t�) ≥ a�

})

=
∮

· · ·
∮

C̃Y (0, z1 · · · , zm−1)D̃Y (0, z1, . . . , zm−1)
dz1

2π iz1
· · · dzm−1

2π izm−1

=
∮

· · ·
∮ [

m−1∏
�=1

1

1 − z�

]
DY (z1, . . . , zm−1)

dz1

2π iz1
· · · dzm−1

2π izm−1
.

This proves Theorem 3.2.
In Sections 5.1, 5.2 and 5.3 below, we will introduce the functions CY (ẑ1, . . . , ẑm),

DY (ẑ1, . . . , ẑm) and prove Lemma 5.1 and Lemma 5.2. We would like to emphasize that
although most of the functions are already defined in [8], there are some modifications due to
the different settings of two papers. One could match our definitions in this paper with their
analogs in [8] by doing the following changes in their paper: k� → N + 1 − k�, yi → yi + 1
and ai → ai + 1. The first change is due to the different ordering of the particles, the other
changes are related to a shift of all particles by 1 in order to make our formula as simple as
possible.

5.1. Preliminaries on Bethe roots and some functions involving the initial condition Y .
Before we define the functions CY (ẑ1, . . . , ẑm), DY (ẑ1, . . . , ẑm) and prove Lemma 5.1 and
Lemma 5.2, we introduce the concepts of Bethe roots, and some functions involving the
initial condition Y .

5.1.1. Bethe roots. Let

q(w) := wN(w + 1)L−N.

The Bethe equation associated to the periodic TASEP of period L and particle numbers N is
defined to be

(49) qz(w) = q(w) − z = wN(w + 1)L−N − z

for any z ∈C.
We remark that this is slightly different from the function qz(w) in [6–8] which is defined

by wN(w + 1)L−N − zL. The main reason the authors used zL instead of z in their papers
is for the purpose of asymptotic analysis in the so-called relaxation time scale: The roots of
wN(w+1)L−N −zL are on level curves which only depend on two parameters, the ratio N/L

and the magnitude of z, and these two parameters are chosen to be independent of L in the
asymptotic analysis. However, in this paper we only consider the finite time case for periodic
TASEP and we expect that the parameter L will disappear in the probability distributions as
we claimed in Theorem 3.1 and Theorem 3.2. Thus, it is more natural to use (49).

We also introduce the set of Bethe roots

Rz := {
w ∈ C : qz(w) = 0

}
, or equivalently,Rz := {

w ∈ C : q(w) = z
}
,

and the level curves of q(w)

�r := {
w ∈ C : ∣∣q(w)

∣∣= r
}
.

Note that the definitions above imply that all the roots in Rz are on the level curve �|z|.
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It was known that (see the related discussions in [6–8] for examples) the level curves of
q(w) are nested contours: �r encloses �r ′ if r > r ′. Moreover, when r > rc for some rc
defined by

rc := NN(L − N)L−N

LL
,

�r is a simple closed contour enclosing both −1 and 0. When r = rc, �r is a self-intersect
contour with the intersection point

wc := −N/L.

When 0 < r < rc, �r splits into two disjoint simple closed contours, one of which encloses
−1 but not 0 and the other encloses 0 but not −1. We denote these two contours �r,L and
�r,R respectively. Moreover, �r,L and �r,R stay on two different sides of wc.

For 0 < r < rc, we denote �r,L (�r,R, respectively) the region enclosed by the contour
�r,L (�r,R, respectively). Then we define

�L = ⋃
0<r<rc

�r,L, and �R = ⋃
0<r<rc

�r,R.

These are two nonintersecting open regions which are on the two sides of wc, respectively.
Moreover, −1 ∈ �L and 0 ∈ �R.

Now we return to the discussion of Bethe roots. When 0 < |z| < rc, we denote

Rz,L = Rz ∩ �L, and Rz,R = Rz ∩ �R.

It is easy to see that Rz,L and Rz,R consists of L − N and N elements respectively. These
elements converge to −1 and 0 respectively, when z → 0.

See Figure 3 for an illustration of the Bethe roots, the level curves and the domains �L
and �R.

We define

qz,L(w) = ∏
u∈Rz,L

(w − u), and qz,R(w) = ∏
v∈Rz,R

(w − v).

FIG. 3. An illustration of the Bethe roots and level curves for q(w) = w2(w+1)4: �r=0.0064 consists of the two
inner dashed curves. On these two curves, the four black dots represent the four points in Rz=0.0064,L, and the two
white dots represent the two points in Rz=0.0064,R. �rc=24/36 consists of the two outer dashed curves separated
by wc = −1/3 (the black square in the middle), within which are the two domains �L and �R respectively.



1288 Z. LIU

By the discussions on Rz,L and Rz,R above, we know that qz,L(w) → (w + 1)L−N and
qz,R(w) → wN as z → 0. Hence, we introduce the “normalized” version of qz,L and qz,R

below

qz,L(w) := qz,L(w)

(w + 1)L−N
, and qz,R(w) := qz,R(w)

wN
.

We further write

(50) h(w; z) =
{
qz,L(w), w ∈ �R,

qz,R(w), w ∈ �L.

It is easy to see that h(w; z) is analytic for (w, z) in both �L × D(rc) and �R × D(rc).
Moreover, it is always nonzero in the above domain. Finally, h(w;0) = 1 for all w ∈ �R ∪�L.

5.1.2. Functions involving the initial condition Y . We introduce some functions involv-
ing the initial condition Y . The two functions EY (z) and chY (v,u; z) were introduced in [8].
We slightly modified their formulas below due to the relabeling of particles. One could re-
place yi by yN+1−i − 1 in the formulas below to recover the versions in [8].

DEFINITION 5.3. Suppose 0 < |z| < rc. Let

(51) EY (z) := ∏
v∈Rz,R

(v + 1)yN+N · Gλ(Y )(Rz,R),

where λ(Y ) = (λ1, . . . , λN) with λi = (yi + i) − (yN + N), and the function Gλ is defined in
(10). It can also be expressed as

EY (z) = det[v−j
i (vi + 1)yj+j ]Ni,j=1

det[v−j
i ]Ni,j=1

,

where v1, . . . , vN are all the elements of Rz,R. We also define EY (0) = 1.

Since all the elements in Rz,R go to 0 as z → 0, it is easy to see (for example, using
equations (51) and (55) below) that EY (z) is analytic for z within {z : |z| < rc}.

Since EY (0) = 1, there exists some positive constant rmax , such that rmax < rc and

(52) EY (z) �= 0, for all z satisfying |z| < rmax .

Note the this also implies Gλ(Y )(Rz,R) �= 0 for all z ∈ D(rmax ) = {z ∈ C : |z| < rmax }.

DEFINITION 5.4. Suppose 0 < |z| < rmax . For any u ∈ �L \ {−1} and v ∈ Rz,R, we
define

(53) chY (v,u; z) =
(

u + 1

v + 1

)yN+N Gλ(Y )((Rz,R \ {v}) ∪ {u})
Gλ(Y )(Rz,R)

,

where λ(Y ) = (λ1, . . . , λN) with λi = (yi + i) − (yN + N).

We remark that the definition above is only valid for discrete points v ∈ Rz,R. Below we
re-express the formula such that it is well defined for all v ∈ �R \ {0}. More explicitly, we
have
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LEMMA 5.5. There exists a function hY (v,u; z) analytically defined on �R × �L ×
D(rmax ) such that

(54) chY (v,u; z) =
(

u + 1

v + 1

)yN+N

· (χλ(Y )(v, u) + hY (v,u; z))
for all |z| < rmax and (v, u) ∈ Rz,R ×(�L \{−1}). Here χλ is a polynomial of v and u defined
in Definition 2.5, and λ(Y ) = (λ1, . . . , λN) with λi = (yi + i)− (yN +N) for 1 ≤ i ≤ N . The
function hY also satisfies

hY (v,u;0) = 0

for all (u, v) ∈ �L × �R.

Note that the right-hand side of (54) is defined on a larger domain than the left-hand side
chY (v,u; z), but they agree on the set where chY (v,u; z) is defined.

PROOF OF LEMMA 5.5. The idea is to reformulate Gλ(Y )((Rz,R \ {v})∪ {u}) and analyt-
ically extend it to �R × �L ×D(rmax ).

First, we express the symmetric function Gλ(Y )(v1, . . . , vN) in terms of finitely many power
sum symmetric functions. More explicitly, we write

(55) Gλ(Y )(v1, . . . , vN) = 1 + ∑
μ=(μ1,...)

c̃λ,μpμ(v1, . . . , vN),

where μ = (μ1, . . .) satisfies N ≥ μ1 ≥ · · · , |μ| = μ1 + · · · ≤ |λ|, and μ1 ≥ 1. The function

pμ(v1, . . . , vN) = ∏
μk≥1

(
v

μk

1 + · · · + v
μk

N

)
.

We remark that the expansion (55) might be different from (11) since the number of variables
in (11) is assumed to be larger than |λ|. We use c̃λ,μ here to mark the possible difference. In
the case when |λ| ≤ N , these coefficients are identical to cλ,μ’s in (11).

We will take two different sets of variables in (55) and obtain an identity between
Gλ(Y )((Rz,R \ {v}) ∪ {u}) and χλ(Y )(v, u). The first set of variables is {v1, . . . , vN } = (Rz,R \
{v}) ∪ {u}. This gives

Gλ(Y )

((
Rz,R \ {v})∪ {u})= 1 + ∑

μ=(μ1,...)

c̃λ,μ

∏
μk≥1

(
hμk

(z) + uμk − vμk
)

= 1 + h̃Y (v, u; z) + ∑
μ=(μ1,...)

c̃λ,μ

∏
μk≥1

(
uμk − vμk

)
,

(56)

where the function

hj (z) := ∑
v′∈Rz,R

(
v′)j , j ≥ 1

is an analytic function of z ∈ D(rmax ) with hj (0) = 0, and

h̃Y (v, u; z) = ∑
μ=(μ1,...)

c̃λ,μ

( ∏
μk≥1

(
hμk

(z) + uμk − vμk
)− ∏

μk≥1

(
uμk − vμk

))

is an analytic function of (v, u, z) ∈ �R × �L ×D(rmax ), which actually is a polynomial of
v and u, with h̃Y (v, u;0) = 0 for any pair (v, u).
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The other set of variables we insert in (55) is {v1, . . . , vN } = {u, vξ, vξ2, . . . , vξN−1} with
ξ = e2π i/N . This formula includes the desired term χλ(v, u). More explicitly, by applying
(14), we have

χλ(v, u) = Gλ
(
u, vξ, . . . , vξN−1)+ vN · r(v, u)

= 1 + ∑
μ=(μ1,...)

c̃λ,μpμ
(
u, vξ, vξ2, . . . , vξN−1)+ vN · r(v, u)

(57)

for some polynomial r(v, u). Note that (vξ)μk + (vξ2)μk + · · · + (vξN−1)μk = −vμk if 1 ≤
μk ≤ N − 1, or (N − 1)vN if μk = N . We have

pμ
(
u, vξ, vξ2, . . . , vξN−1)

= ∏
1≤μk≤N−1

(
uμk − vμk

) ∏
μk=N

(
uμk − vμk + NvN )

= ∏
μk≥1

(
uμk − vμk

)+ vN · a polynomial of v and u.

By inserting this in (57), we immediately obtain

(58) χλ(v, u) = 1 + vN · r̃(v, u) + ∑
μ=(μ1,...)

c̃λ,μ

∏
μk≥1

(
uμk − vμk

)
,

where r̃(v, u) is a polynomial of v and u.
Now we combine (56) and (58) and write

Gλ(Y )

((
Rz,R \ {v})∪ {u})= χλ(v, u) − vN · r̃(v, u) + h̃Y (v, u; z).

We further express vN = z
(v+1)L−N since v ∈Rz,R. This gives

(59) Gλ(Y )

((
Rz,R \ {v})∪ {u})= χλ(v, u) − z · r̃(v, u)

(v + 1)L−N
+ h̃Y (v, u; z).

Note that the expression on the right is analytically defined for (v, u, z) ∈ �R×�L×D(rmax ).
Finally, we prove the lemma. Note that the function

g̃Y (z) := Gλ(Y )(Rz,R)

is an analytic function for z ∈ D(rmax ) with g̃Y (0) = 1. Moreover, it is nonzero in the disk
D(rmax ) by the assumption of rmax (see (52)). Thus, by the definition of chY and equation
(59), we have the expression (54) with

hY (v,u; z) := χλ(v, u) − z · r̃(v, u) · (v + 1)−L+N + h̃Y (v, u; z)
g̃Y (z)

− χλ(v, u).

This function is analytically defined for (v, u, z) ∈ �R × �L × D(rmax ) since each term is
analytic and the denominator is nonzero. Moreover, we have hY (v,u;0) = 0 for all (v, u) ∈
�R × �L by using the facts h̃Y (v, u;0) = 0 and g̃Y (0) = 1. This finishes the proof. �

5.2. Function CY (ẑ1, . . . , ẑm) and proof of Lemma 5.1. The function CY (ẑ1, . . . , ẑm) is
defined to be (see [8], Definition 3.9 and 3.13)

CY (ẑ1, . . . , ẑm) =
[

m∏
�=2

ẑ�−1

ẑ�−1 − ẑ�

]
· EY (ẑ1) · A (ẑ1, . . . , ẑm),
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where EY (ẑ1) is defined in Definition 5.3, A = A1 · A2 · A3 with

A1(ẑ1, . . . , ẑm) :=
m∏

�=1

[ ∏
u∈Rẑ�,L

(−u)k�−1−k�

· ∏
v∈Rẑ�,R

(v + 1)(a�−1+k�−1)−(a�+k�)e(t�−t�−1)v

]
,

A2(ẑ1, . . . , ẑm) :=
m∏

�=1

∏
u∈Rẑ�,L

(−u)N
∏

v∈Rẑ�,R
(v + 1)L−N∏

(u,v)∈Rẑ�,L×Rẑ�,R
(v − u)

,

A3(ẑ1, . . . , ẑm) :=
m∏

�=2

∏
(u,v)∈Rẑ�−1,L×Rẑ�,R

(v − u)∏
u∈Rẑ�−1,L

(−u)N
∏

v∈Rẑ�,R
(v + 1)L−N

.

In the definition of A1 above, we set a0 = k0 = t0 = 0.
It is obvious that Ai functions are analytic for (ẑ1, . . . , ẑm) ∈ (D0(rm))m ⊂ (D0(rc))

m since
locally each Bethe root w ∈ Rẑ,R ∪ Rẑ,L as a function of ẑ is analytic when ẑ ∈ D0(rc).
Moreover, recall that all Bethe roots in Rẑ,L go to −1 and all Bethe roots in Rẑ,R go to 0
when ẑ → 0. We know that these Ai functions could be analytically extended to (D(rm))m,
that is, they are all well defined if some ẑ� = 0. By replacing all u’s by −1 and all v’s by 0 in
the formulas, we have

A1(0, . . . ,0) = A2(0, . . . ,0) = A3(0, . . . ,0) = 1.

Also recall that EY (ẑ1) is analytic within |ẑ1| < rmax with EY (0) = 1. We conclude that
C̃Y (z0, . . . , zm−1) = CY (z0, z0z1, . . . , z0 · · · zm−1) is analytic for (z0, . . . , zm−1) ∈ D(rmax )×
D

m−1. Moreover,

C̃Y (0, z1, . . . , zm−1) =
m−1∏
�=1

1

1 − z�

.

This finishes the proof of Lemma 5.1.

5.3. Function DY (ẑ1, . . . , ẑm) and proof of Lemma 5.2. Similar to DY , the function
DY (ẑ1, . . . , ẑm) has both Fredholm determinant and series expansion representations. We
only use the series expansion representation of DY (ẑ1, . . . , ẑm) to prove Lemma 5.2.

We remind the notation conventions �(W),�(W ;W ′) and f (W) we introduced at the
beginning of Section 2.1.2.

The following definition is the series expansion representation (by applying Proposi-
tion 2.9) of Definition 3.10 of [8]. This series expansion formula for the case of step initial
condition was introduced in [7], Lemma 4.4.

DEFINITION 5.6. We define

DY (ẑ1, . . . , ẑm) := ∑
n∈(Z≥0)

m

1

(n!)2 Dn,Y (ẑ1, . . . , ẑm)
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with n! = n1! · · ·nm! for n = (n1, . . . , nm). Here

Dn,Y (ẑ1, . . . , ẑm)

= ∑
U(�)=(u

(�)
1 ,...,u

(�)
n�

)∈(Rẑ�,L)n�

V (�)=(v
(�)
1 ,...,v

(�)
n�

)∈(Rẑ�,R)n�

�=1,...,m

[
(−1)n1(n1+1)/2 �(U(1);V (1))

�(U(1))�(V (1))

· det
[chY (v

(1)
i , u

(1)
j ; ẑ1)

v
(1)
i − u

(1)
j

]n1

i,j=1

]

·
[

m∏
�=1

(�(U(�)))2(�(V (�)))2

(�(U(�);V (�)))2 f�

(
U(�))f�

(
V (�)) · (h(U(�), z�

))2(
h
(
V (�), z�

))2
· J (U(�))J (V (�))]

·
[

m−1∏
�=1

�(U(�);V (�+1))�(V (�);U(�+1))

�(U(�);U(�+1))�(V (�);V (�+1))

· (1 − ẑ�+1/ẑ�)
n�(1 − ẑ�/ẑ�+1)

n�+1

h(U(�); ẑ�+1)h(V (�); ẑ�+1)h(U(�+1); ẑ�)h(V (�+1); ẑ�)

]
.

The function chY is defined in (53). The function f� is defined by

f�(w) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F�(w)

F�−1(w)
, w ∈ �L \ {−1},

F�−1(w)

F�(w)
, w ∈ �R \ {0},

with

F�(w) :=
{
wk�(w + 1)−a�−k�et�w, � = 1, . . . ,m,

1, � = 0.

This is consistent with (9). The function h is defined by (50). We also clarify that the notation

h(W, ẑ) := h(w1, ẑ) · · ·h(wn, ẑ)

for any vector W = (w1, . . . ,wn) and any complex number |ẑ| < rmax . Finally, the function

J (w) = w(w + 1)

Lw + N
= q(w)

q ′(w)

is consistent with (41).

Since Rẑ�,L and Rẑ�,R have finite sizes L − N and N respectively, the factor �(U(�)) ×
�(V (�)) = 0 if n� > min{N,L − N}. Thus Dn,Y (ẑ1, . . . , ẑm) = 0 if |n| = n1 + · · · + nm >

m · min{N,L − N}. This implies the summation in the definition of DY (ẑ1, . . . , ẑm) only
involves finitely many nonzero terms.

Now we proceed to prove Lemma 5.2 by using Proposition 4.4. We need to rewrite
Dn,Y (ẑ1, . . . , ẑm) in the form of G(z0, . . . , zm−1) defined in (44). Here the variables
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z0, . . . , zm−1 were introduced before as in (47), which also match (42) in the setting of
Proposition 4.4. They satisfy

ẑ� =
�−1∏
j=0

zj , � = 1, . . . ,m.

We also rewrite chY (v
(1)
i , u

(1)
j ; ẑ1) in the summand of Dn,Y (ẑ1, . . . , ẑm) by its analytical ex-

tension using Lemma 5.5. We write

D̃n,Y (z0, . . . , zm−1) := Dn,Y (ẑ1, . . . , ẑm)

=
[

m−1∏
�=1

(1 − z�)
n�

(
1 − 1

z�

)n�+1
]

· Gn,Y (z0, . . . , zm−1)
(60)

with

Gn,Y (z0, . . . , zm−1)

:= ∑
U(�)∈(Rẑ�,L)n�

V (�)∈(Rẑ�,R)n�

�=1,...,m

[
m∏

�=1

J
(
U(�))J (V (�))]

· HY

(
U(1), . . . ,U(m);V (1), . . . , V (m); z0, . . . , zm−1

)
.

The function

HY

(
U(1), . . . ,U(m);V (1), . . . , V (m); z0, . . . , zm−1

)
:=

[
m−1∏
�=1

C
(
U(�);U(�+1))C(V (�);V (�+1))]

· AY

(
U(1), . . . ,U(m);V (1), . . . , V (m); z0, . . . , zm−1

)
,

where C(W ;W ′) = �(W)�(W ′)
�(W ;W ′) is the Cauchy-type factor defined in (33), and

AY

(
U(1), . . . ,U(m);V (1), . . . , V (m); z0, . . . , zm−1

)
:= (−1)n1(n1+1)/2�

(
U(1);V (1))

· det
[(u

(1)
j + 1

v
(1)
i + 1

)yN+N

· χλ(Y )(v
(1)
i , u

(1)
j ) + hY (v

(1)
i , u

(1)
j ; ẑ1)

v
(1)
i − u

(1)
j

]n1

i,j=1

· [�(
U(m))�(

V (m))] · [ m∏
�=1

f�(U
�)f�(V

(�))

(�(U(�);V (�)))2 · (h(U(�); ẑ�

)
h
(
V (�); ẑ�

))2]

·
[

m−1∏
�=1

�(V (�);U(�+1))�(U(�);V (�+1))

h(U(�+1); ẑ�)h(U(�); ẑ�+1)h(V (�+1); ẑ�)h(V (�); ẑ�+1)

]
.

(61)

Recall that h(w; ẑ) is analytic and nonzero for (w, ẑ) ∈ (�L ∪ �R) × D(rmax ), see the dis-
cussions after equation (50). The function hY (v,u; ẑ) is analytic for (v, u, ẑ) ∈ �R × �L ×
D(rmax ) by Lemma 5.5. We also recall that f�(w) is analytic for w ∈ (�L \{−1})∪(�R \{0}).
v − u is nonzero for (v, u) ∈ �R × �L since �L ∩ �R = ∅. χλ(Y )(v, u) is a polynomial by
Definition 2.5. Moreover, ẑ� depends on z0, . . . , zm−1 analytically. These facts imply that A

is analytic for each u
(�)
i�

∈ �L \ {−1}, each v
(�)
i�

∈ �L \ {0}, and each z0 ∈D(rmax ) and z� ∈ D.
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Now we assume that q(w) dominates HY at w = −1 and w = 0. The proof of this
assumption will be postponed to the end of this section. With this assumption, Proposi-
tion 4.4 is applicable here. We obtain that Gn,Y (z0, . . . , zm−1) is analytic for (z0, . . . , zm−1) ∈
D(rmax ) ×D

m−1, and

Gn,Y (0, z1, . . . , zm−1)

=
m∏

�=2

n�∏
i�=1

[
1

1 − z�

∫
�in

�,L

du
(�)
i�

2π i
− z�

1 − z�

∫
�out

�,L

du
(�)
i�

2π i

]
·

n1∏
i1=1

∫
�1,L

du
(1)
i1

2π i

·
m∏

�=2

n�∏
i�=1

[
1

1 − z�

∫
�in

�,R

dv
(�)
i�

2π i
− z�

1 − z�

∫
�out

�,R

dv
(�)
i�

2π i

]
·

n1∏
i1=1

∫
�1,R

dv
(1)
i1

2π i

· HY

(
U(1), . . . ,U(m);V (1), . . . , V (m);0, z1, . . . , zm−1

)
.

Here the contours are the same as in Proposition 4.4 and Section 2.1.1.1. On the other hand,
by using the following facts h(w;0) = 1, hY (v,u;0) = 0, and ẑ� = 0 for all � if z0 = 0, we
immediately have

AY

(
U(1), . . . ,U(m);V (1), . . . , V (m);0, z1 · · · , zm−1

)
=
[
(−1)n1(n1+1)/2�

(
U(1);V (1))det

[(u
(1)
j + 1

v
(1)
i + 1

)yN+N

· χλ(Y )(v
(1)
i , u

(1)
j )

v
(1)
i − u

(1)
j

]n1

i,j=1

]

· [�(
U(m))�(

V (m))] · [ m∏
�=1

f�(U
�)f�(V

(�))

(�(U(�);V (�))2)

]

·
[

m−1∏
�=1

�
(
V (�);U(�+1))�(

U(�);V (�+1))],

and, by inserting K(ess)
Y defined in Definition 2.6,

HY

(
U(1), . . . ,U(m);V (1), . . . , V (m);0, z1, . . . , zm−1

)
=
[
(−1)n1(n1+1)/2 �(U(1);V (1))

�(U(1))�(V (1))
det

[
K(ess)

Y

(
v

(1)
i , u

(1)
j

)]n1
i,j=1

]

·
[

m∏
�=1

(�(U(�)))2(�(V (�)))2

(�(U(�);V (�)))2 f�

(
U(�))f�

(
V (�))]

·
[

m−1∏
�=1

�(U(�);V (�+1))�(V (�);U(�+1))

�(U(�);U(�+1))�(V (�);V (�+1))

]
.

Now we come back to (60). By the above results of Gn,Y , we know that D̃n,Y (z0, . . . , zm−1)

is analytic in D(rmax ) ×D
m−1
0 , with

D̃n,Y (0, z1, . . . , zm−1) = Dn,Y (z1, . . . , zm−1).
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Here Dn,Y is defined in (16). Recall the definition of D̃Y (z0, . . . , zm−1) after equation (48),

D̃Y (z0, . . . , zm−1) = DY (ẑ1, . . . , ẑm)

= ∑
n∈(Z≥0)

m

1

(n!)2 Dn,Y (ẑ1, . . . , ẑm)

= ∑
n∈(Z≥0)

m

1

(n!)2 D̃n,Y (z0, . . . , zm−1).

We immediately obtain that D̃Y (z0, . . . , zm−1) is analytic in D(rmax ) ×D
m−1
0 with

D̃Y (0, z1 · · · , zm−1) = ∑
n∈(Z≥0)

m

1

(n!)2Dn,Y (z1, . . . , zm−1) =DY (z1, . . . , zm−1).

This finishes the proof of Lemma 5.2.
It remains to prove the assumption that q(w) dominates HY at w = −1 and w = 0. The

two cases for w = −1 and w = 0 are similar. Hence, we only provide the proof for w = −1
and omit the other case.

For w = −1 ∈ �L, we need to verify that along any Cauchy chain u
(s)
js

, u
(s+1)
js+1

, . . . , u
(s′)
js′ ,

(62) q(w)AY

(
U(1), . . . ,U(m);V (1), . . . , V (m); z0, . . . , zm−1

)|
u

(s)
js

=u
(s+1)
js+1

=···=u
(s′)
j
s′ =w

is analytic at w = −1, when all other coordinates of u
(�)
i�

’s are fixed in �L \ {−1}, v
(�)
i�

’s are

fixed in �R \ {0}, and (z0, . . . , zm−1) ∈ D(rmax )×D
m−1. Here 1 ≤ s ≤ s ′ ≤ m and js, . . . , js′

are positive numbers less than ns, . . . , ns′, respectively.
By the formula of AY in (61), we could find that all the singularities for u

(�)
i�

= −1 are

coming from the function f�(u
(�)
i�

) = (u
(�)
i�

)k�−k�−1(u
(�)
i�

+1)(a�−1+k�−1)−(a�+k�)e
(t�−t�−1)u

(�)
i� for

� ≥ 1, and a possible extra singularity from (u
(�)
i�

+ 1)yN+N factor when � = 1. On the other

hand, q(w) = wN(w+1)L−N has the factor (w+1)L−N . Thus, the order of (w+1) in (62) is
at least (L−N)+ (as−1 +ks−1)− (as′ +ks′) for s > 1 and (L−N)− (as′ +ks′)+yN +N for
s = 1. Both numbers are nonnegative by (46) and the assumption L ≥ max{a1 +k1, . . . , am +
km} − yN . Thus, (62) is analytic at w = −1 when other coordinates are fixed.

6. Proof of Proposition 4.3. In this section, we prove Proposition 4.3 by induction on∑m−1
�=1 |I (�) × J (�+1)|, which is also the total degree of denominators in the Cauchy-type

factors
∏m−1

�=1 C(W
(�)

I (�);W(�+1)

J (�+1) ).

6.1. Base step:
∑m−1

�=1 |I (�) × J (�+1)| = 0. If
∑m−1

�=1 |I (�) × J (�+1)| = 0, then we have

either I (�) = ∅ or J (�+1) = ∅ for each �. Thus C(W
(�)

I (�);W(�+1)

J (�+1) ) = �(W
(�+1)

J (�+1) ) or �(W
(�)

J (�)),
which are polynomials of the coordinates. Thus without loss of generality (up to modifying
the function A), we only consider the case when C(W

(�)

I (�);W(�+1)

J (�+1) ) = 1 for each �, and

H
(
W(1), . . . ,W(m); z0, . . . , zm−1

)= A
(
W(1), . . . ,W(m); z0, . . . , zm−1

)
.

Now we reformulate G(z0, z1, . . . , zm) in (40), the summation of A · ∏J (W(�)) over all
W(�) ∈ Rn�

ẑ�
. Recall that J (w) := q(w)/q ′(w), and Rẑ�

is defined in (39) which are the roots
of q(w) = ẑ� within �.
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For each ẑ� ∈ D0(rmax ), we have the following roots summation formula:

(63)
∑

w∈Rẑ�

J (w)f (w) =
∫
�|ẑ�|+ε

q(w)

q(w) − ẑ�

f (w)
dw

2π i
−
∫
�|ẑ�|−ε

q(w)

q(w) − ẑ�

f (w)
dw

2π i

for any f which is analytic within a neighborhood of �|ẑ�|, and ε > 0 is a sufficiently small
positive number. Recall that �r = {w ∈ � : |q(w)| = r} is the contour defined in (38). The
above formula (63) follows from evaluating the residues of q(w)

q(w)−ẑ�
f (w) when deforming the

contours from �|ẑ�|+ε to �|ẑ�|−ε .
By applying (63) for all the coordinates of W(�)’s, we obtain

G(z0, . . . , zm−1)

= ∑
W(1)∈Rn1

ẑ1

· · · ∑
W(m)∈Rnm

ẑm

[
m∏

�=1

J
(
W(�))] · H (

W(1), . . . ,W(m); z0, . . . , zm−1
)

=
m∏

�=1

n�∏
i�=1

[∫
�|ẑ�|+ε

q(w
(�)
i�

)

q(w
(�)
i�

) − ẑ�

dw
(�)
i�

2π i
−
∫
�|ẑ�|−ε

q(w
(�)
i�

)

q(w
(�)
i�

) − ẑ�

dw
(�)
i�

2π i

]

· H (
W(1), . . . ,W(m); z0, . . . , zm−1

)
.

Now we apply the assumption that q(w) dominates H . It implies that the integrand is
analytic for w�

i�
within the region bounded by �|ẑ�|−ε when all other coordinates are fixed.

Thus the integral along �|ẑ�|−ε with respect to w
(�)
i�

vanishes. We have

G(z0, . . . , zm−1)

=
m∏

�=1

n�∏
i�=1

[∫
�|ẑ�|+ε

q(w
(�)
i�

)

q(w
(�)
i�

) − ẑ�

dw
(�)
i�

2π i

]
H
(
W(1), . . . ,W(m); z0, . . . , zm−1

)

=
m∏

�=1

n�∏
i�=1

[∫
�rmax −ε′

q(w
(�)
i�

)

q(w
(�)
i�

) − ẑ�

dw
(�)
i�

2π i

]
H
(
W(1), . . . ,W(m); z0, . . . , zm−1

)
,

(64)

where we deformed the contours �|ẑ�|+ε to �rmax −ε′ for any sufficiently small ε′ > 0 without

encountering any pole. Recall that ẑ� = z0z1 · · · z�−1 and the factor
q(w

(�)
i�

)

q(w
(�)
i�

)−ẑ�

is analytic in

ẑ� for |ẑ�| < rmax − ε′. Moreover, H is analytic in z�’s for given w
(�)
i�

’s on the contours of
integration. Thus, the formula (64) for G(z0, . . . , zm−1) is analytic when |z0| < rmax − ε′ and
|z1| < 1, . . . , |zm−1| < 1. We could also drop this ε′ since it could be chosen arbitrarily small.
This proves that G(z0, . . . , zm−1) is can be analytically extended to D(rmax ) ×D

m−1.
Now we evaluate G(0, z1, . . . , zm−1) in (64). This gives all ẑ� = 0 by the definition of ẑ�

in (42). Hence,

G(0, z1, . . . , zm−1) =
m∏

�=1

n�∏
i�=1

[∫
�rmax −ε′

dw
(�)
i�

2π i

]
H
(
W(1), . . . ,W(m);0, z1, . . . , zm−1

)
.

Since the integrand is analytic for each w
(�)
i�

∈ � \ {0}, we could rewrite

∫
�rmax −ε′

dw
(�)
i�

2π i
= 1

1 − z�−1

∫
�in

�

dw
(�)
i�

2π i
− z�−1

1 − z�−1

∫
�out

�

dw
(�)
i�

2π i
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for each � = 2, . . . ,m and ∫
�rmax −ε′

dw
(1)
i1

2π i
=
∫
�1

dw
(1)
i1

2π i
,

where we omit the integrand H in the above formulas, and the contours �out
� , �in

� for 2 ≤
� ≤ m, and �1 are described in the proposition. They are simple closed contours within �

and enclosing 0.
Although we did not encounter any poles from the integrand in the above integral decom-

position, the idea of decomposing the integrals into two parts with inner and outer contours
comes from managing the possible poles arising from the Cauchy-type factors. In the case
when such poles are present, we need to keep track of the locations of the contours and treat
the outer and inner contours separately.

After the above decomposition we immediately obtain the formula (43) for G(0, z1, . . . ,

zm−1). This finishes the base step of induction.

6.2. Inductive step. Now we assume the proposition holds for the cases of
∑m−1

�=1 |I (�) ×
J (�+1)| ≤ S − 1, and consider the case when

∑m−1
�=1 |I (�) × J (�+1)| = S ≥ 1.

Since S ≥ 1, there exists a largest s, 2 ≤ s ≤ m, such that I (s−1) × J (s) is nonempty.
Without loss of generality (up to relabeling the coordinates of W(s−1),W(s)), we assume that

I (s−1) = {1, . . . , a}, J (s) = {1, . . . , b}
for some 1 ≤ a ≤ ns−1 and 1 ≤ b ≤ ns . Later we will consider the sum over w

(s)
1 ∈ Rẑs

so it is convenient to introduce the notation Ŵ (s) = (w
(s)
2 , . . . ,w

(s)
ns ), and more generally

Ŵ
(s)
U = W

(s)
U\{1} the vector obtained by removing w

(s)
1 , if it appears, from W

(s)
U for any set

U ⊆ {1, . . . , ns}. Thus

Ŵ
(s)

I (s) = W
(s)

I (s)\{1}, Ŵ
(s)

J (s) = W
(s)

J (s)\{1} = (
w

(s)
2 , . . . ,w

(s)
b

)
.

By moving all the factors involving w
(s)
1 out from the Cauchy-type product, and using the

assumption of s that it is the largest index satisfying I (s−1) × J (s) �= ∅, we have
m−1∏
�=1

C
(
W

(�)

I (�);W(�+1)

J (�+1)

)

= h(w
(s)
1 ) ·∏b

j=2(w
(s)
j − w

(s)
1 )∏

i∈I (s−1)(w
(s−1)
i − w

(s)
1 )

· C
(
W

(1)

I (1);W(2)

J (2)

) · · ·C
(
W

(s−1)

I (s−1) ; Ŵ (s)

J (s)

)
C
(
Ŵ

(s)

I (s);W(s+1)

J (s+1)

) · · ·C
(
W

(m−1)

I (m−1) ;W(m)

J (m)

)
,

(65)

where h is a polynomial defined by

h
(
w

(s)
1

)=
⎧⎪⎨⎪⎩

∏
i∈I (s)\{1}

(
w

(s)
i − w

(s)
1

)
, if 1 ∈ I (s),

1, if 1 is not in I (s).

We remark that there is no denominator factor coming from C(W
(s)

I (s);W(s+1)

J (s+1) ) since I (s) ×
J (s+1) = ∅ by our choice of s. This implies C(W

(s)

I (s);W(s+1)

J (s+1) ) = h(w
(s)
1 ) · C(Ŵ

(s)

I (s);W(s+1)

J (s+1) )

and further (65). We also remark that (65) does not contain any pole of w
(s)
1 within the

contour �|ẑs | = {w : |q(w)| = |ẑs |} since all the points w
(s−1)
i are outside this contour by

the assumption that |ẑs−1| > |ẑs |.
This notation above and formula (65) will be used later in this section.
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6.2.1. Reformulating G. We first need to reformulate G such that the resulting formula is
suitable for induction hypothesis. This could be done by evaluating the summation of w

(s)
1 ∈

Rẑs
. Recall that

G(z0, . . . , zm−1) = ∑
w

(�)
i�

∈Rẑ�

1≤i�≤n�
1≤�≤m

[ ∏
1≤i�≤n�
1≤�≤m

J
(
w

(�)
i�

)] · H (
W(1), . . . ,W(m); z0, . . . , zm−1

)

with

H
(
W(1), . . . ,W(m); z0, . . . , zm−1

)
=
[

m−1∏
�=1

C
(
W

(�)

I (�);W(�+1)

J (�+1)

)] · A(W(1), . . . ,W(m); z0, . . . , zm−1
)

for some function A which is analytic for each w
(�)
i�

∈ �\{0} and (z0, . . . , zm−1) ∈ D(rmax )×
D

m−1. This assumption, together with the fact that
∏m−1

�=1 C(W
(�)

I (�);W(�+1)

J (�+1) ) does not have any

pole for w
(s)
1 inside �|ẑs |, imply that H(W(1), . . . ,W(m); z0, . . . , zm−1) is analytic for w

(s)
1

inside the contour �|ẑs | except for the point 0.

By applying the formula (63) for w
(s)
1 ∈ Rẑs

, we have∑
w

(s)
1 ∈Rẑs

J
(
w

(s)
1

)
H
(
W(1), . . . ,W(m); z0, . . . , zm−1

)

=
∫
�|ẑs |+ε

q(w
(s)
1 )

q(w
(s)
1 ) − ẑs

H
(
W(1), . . . ,W(m); z0, . . . , zm−1

)dw
(s)
1

2π i

+
∫
�|ẑs |−ε

−q(w
(s)
1 )

q(w
(s)
1 ) − ẑs

H
(
W(1), . . . ,W(m); z0, . . . , zm−1

)dw
(s)
1

2π i

for some sufficiently small ε > 0. By the discussions above, we could deform the second
contour sufficiently close to 0. Note that we assume q(w

(s)
1 ) dominates H at w

(s)
1 = 0 in the

proposition setting. Therefore, the second contour integral vanishes and only the first one
survives. We could further deform the first contour to be sufficiently close to �rmax . Such a
contour deformation gives the residues of w

(s)
1 = w

(s−1)
i for i = 1, . . . , a. Therefore, we have∑

w
(s)
1 ∈Rẑs

J
(
w

(s)
1

)
H
(
W(1), . . . ,W(m); z0, . . . , zm−1

)
= H1

(
W(1), . . . , Ŵ (s), . . . ,W(m); z0, . . . , zm−1

)
+

a∑
k=1

H2,k

(
W(1), . . . , Ŵ (s), . . . ,W(m); z0, . . . , zm−1

)
,

(66)

where

H1
(
W(1), . . . , Ŵ (s), . . . ,W(m); z0, . . . , zm−1

)
=
∫
�rmax −0+

q(w
(s)
1 )

q(w
(s)
1 ) − ẑs

H
(
W(1), . . . ,W(m); z0, . . . , zm−1

)dw
(s)
1

2π i

(67)
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with rmax−0+ denotes a number sufficiently close to rmax from below, and

H2,k

(
W(1), . . . , Ŵ (s), . . . ,W(m); z0, . . . , zm−1

)
= Res

( −q(w
(s)
1 )

q(w
(s)
1 ) − ẑs

H
(
W(1), . . . ,W(m); z0, . . . , zm−1

)
,w

(s)
1 = w

(s−1)
k

)

for 1 ≤ k ≤ a. Recall that the notation Ŵ (s) = (w
(s)
2 , . . . ,w

(s)
a ).

We could further evaluate H2,k more explicitly by using the formula (65) and write

H2,k

(
W(1), . . . , Ŵ (s), . . . ,W(m); z0, . . . , zm−1

)
= C

(
W

(1)

I (1);W(2)

J (2)

) · · ·C
(
W

(s−1)

I (s−1)\{k}; Ŵ
(s)

J (s)

)
C
(
Ŵ

(s)

I (s);W(s+1)

J (s+1)

) · · ·C
(
W

(m−1)

I (m−1) ;W(m)

J (m)

)
· (−1)k+b · 1

1 − zs−1
· h(w(s−1)

k

) · A(W(1), . . . ,W(m); z0, . . . , zm−1
)|

w
(s)
1 =w

(s−1)
k

.

(68)

Here the factor (−1)b+k comes from evaluating∏b
j=2(w

(s)
j − w

(s)
1 ) · �(W

(s−1)

I (s−1) )∏
i �=k(w

(s−1)
i − w

(s)
1 )

∏b
j=2(w

(s−1)
k − w

(s)
j )�(W

(s−1)

I (s−1)\{k})

∣∣∣∣
w

(s)
1 =w

(s−1)
k

,

and 1
1−zs−1

comes from

1

1 − zs−1
= ẑs−1

ẑs−1 − ẑs

= q(w
(s)
1 )

q(w
(s)
1 ) − ẑs

∣∣∣∣
w

(s)
1 =w

(s−1)
k

.

Now we insert the formula (66) to the definition of G and write

G(z0, . . . , zm−1) = G1(z0, . . . , zm) +
a∑

k=1

G2,k(z0, . . . , zm−1)

with

G1(z0, . . . , zm−1)

= ∑
w

(�)
i�

∈Rẑ�

1≤i�≤n�,1≤�≤m
(i�,�) �=(1,s)

[ ∏
1≤i�≤n�,1≤�≤m

(i�,�) �=(1,s)

J
(
w

(�)
i�

)] · H1
(
W(1), . . . , Ŵ (s), . . . ,W(m); z0, . . . , zm−1

)

and

G2,k(z0, . . . , zm−1)

= ∑
w

(�)
i�

∈Rẑ�

1≤i�≤n�,1≤�≤m
(i�,�) �=(1,s)

[ ∏
1≤i�≤n�,1≤�≤m

(i�,�) �=(1,s)

J
(
w

(�)
i�

)] · H2,k

(
W(1), . . . , Ŵ (s), . . . ,W(m); z0, . . . , zm−1

)

for 1 ≤ k ≤ a. We will show that both G1 and G2,k are both suitable for induction hypothesis.
We will verify these in Sections 6.2.2 and 6.2.3.
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6.2.2. Analyzing G1 by using induction hypothesis. Now we claim that G1 is suitable for
induction hypothesis. We need to check all the assumptions of Proposition 4.3 with different
settings and smaller

∑m−1
�=1 |I (�) × J (�+1)|. We consider the following modification of the

settings in Proposition 4.3:

(1) � → �̃ := {w ∈ � : |q(w)| < rmax },
(2) ns → ns − 1,
(3) W(s) → Ŵ (s) = {w(s)

2 , . . . ,w
(s)
ns },

(4) I (s) → I (s) \ {1}, J (s) → J (s) \ {1},
(5) A(W(1), . . . ,W(m); z0, . . . , zm−1) → A1(W

(1), . . . , Ŵ (s), . . . ,W(m); z0, . . . , zm−1),
(6) H(W(1), . . . ,W(m); z0, . . . , zm−1) → H1(W

(1), . . . , Ŵ (s), . . . ,W(m); z0, . . . , zm−1),

where

A1
(
W(1), . . . , Ŵ (s), . . . ,W(m); z0, . . . , zm−1

)
:=

∫
�rmax −0+

q(w
(s)
1 )

q(w
(s)
1 ) − ẑs

· h(w
(s)
1 ) ·∏b

j=2(w
(s)
j − w

(s)
1 )∏

i∈I (s−1) (w
(s−1)
i − w

(s)
1 )

· A(W(1), . . . ,W(m); z0, . . . , zm−1
)dw

(s)
1

2π i
.

Note that by using the formulas (65), (67) and the definition of H function, we have

H1 = C
(
W

(1)

I (1);W(2)

J (2)

) · · ·C
(
W

(s−1)

I (s−1) ; Ŵ (s)

J (s)

)
C
(
Ŵ

(s)

I (s);W(s+1)

J (s+1)

) · · ·C
(
W

(m−1)

I (m−1) ;W(m)

J (m)

)
· A1

(
W(1), . . . , Ŵ (s), . . . ,W(m); z0, . . . , zm−1

)
.

Thus H1 has the same form of (35). Considering the facts that |ẑs | = |z0 · · · zs−1| < rmax and
that ẑ� depends on z0, . . . , zm−1 analytically, and using the assumption that A is analytic for
each zi , we know that both A1 and H1 are analytic for all (z0, . . . , zm) ∈ D(rmax ) ×D

m−1 by
their formulas above. Moreover, by using the assumption that A is analytic for each w

(�)
i�

∈
�0, we know A1 is also analytic for each w

(�)
i�

∈ �̃0 := �̃ \ {0}.
Moreover, we still have q(w) dominates H1 at w = 0 by using the facts that any Cauchy

chain in H1 is a Cauchy chain in H and that A1 has the same singularities as in A for any
coordinates w

(�)
i�

within �̃. Here (i�, �) �= (1, s).

Finally, since we reduced |I (s) ×J (s+1)| by |J (s+1)| = b ≥ 1, we could apply the induction
hypothesis on the above new setting.

By applying the induction hypothesis, we know that G1 is analytic for (z0, . . . , zm) ∈
D(rmax ) ×D

m−1. Moreover, we have

G1(0, z1, . . . , zm−1)

= ∏
1≤i�≤n�
2≤�≤m

(i�,�) �=(1,s)

[
1

1 − z�−1

∫
�in

�

dw
(�)
i�

2π i
− z�−1

1 − z�−1

∫
�out

�

dw
(�)
i�

2π i

]
·

n1∏
i1=1

∫
�1

dw
(1)
i1

2π i

· H1
(
W(1), . . . , Ŵ (s), . . . ,W(m);0, z1, . . . , zm−1

)
= ∏

1≤i�≤n�
2≤�≤m

(i�,�) �=(1,s)

[
1

1 − z�−1

∫
�in

�

dw
(�)
i�

2π i
− z�−1

1 − z�−1

∫
�out

�

dw
(�)
i�

2π i

]
·

n1∏
i1=1

∫
�1

dw
(1)
i1

2π i
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·
∫
�rmax −0+

dw
(s)
1

2π i
H
(
W(1), . . . ,W(m);0, z1, . . . , zm−1

)
.

Here we remark that the above contours of integration are restricted in �̃ since we applied
the induction hypothesis for �̃. Now we deform the contour of w

(s)
1 to the contour �out

s (such

deformation will not pass any poles of w
(s)
1 since the outermost poles of w

(s)
1 are on the

contours �out
s−1 ∪ �in

s−1 which is inside �out
s ), we obtain

G1(0, z1, . . . , zm−1)

= ∏
1≤i�≤n�
2≤�≤m

(i�,�) �=(1,s)

[
1

1 − z�−1

∫
�in

�

dw
(�)
i�

2π i
− z�−1

1 − z�−1

∫
�out

�

dw
(�)
i�

2π i

]

·
n1∏

i1=1

∫
�1

dw
(1)
i1

2π i
·
∫
�out

s

dw
(s)
1

2π i
H
(
W(1), . . . ,W(m);0, z1, . . . , zm−1

)
.

(69)

6.2.3. Analyzing G2,k by using induction hypothesis. We claim that G2,k is suitable for
induction hypothesis. Similar to the case of G1, we need to make a few modifications in
Proposition 4.3. These changes are:

(1) ns → ns − 1,
(2) W(s) → Ŵ (s) = {w(s)

2 , . . . ,w
(s)
ns },

(3) I (s) → I (s) \ {1}, J (s) → J (s) \ {1},
(4) I (s−1) → I (s−1) \ {k},
(5) A(W(1), . . . ,W(m); z0, . . . , zm−1) → A2,k(W

(1), . . . , Ŵ (s), . . . ,W(m); z0, . . . , zm−1),
(6) H(W(1), . . . ,W(m); z0, . . . , zm−1) → H2,k(W

(1), . . . , Ŵ (s), . . . ,W(m); z0, . . . ,

zm−1),

where

A2,k

(
W(1), . . . , Ŵ (s), . . . ,W(m); z0, . . . , zm−1

)
= (−1)k+b · 1

1 − zs−1
· h(w(s−1)

k

) · A(W(1), . . . ,W(m); z0, . . . , zm−1
)|

w
(s)
1 =w

(s−1)
k

.

All the other assumptions in Proposition 4.3 with the above setting are easy to check, except
the assumption that q(w) dominates H2,k at w = 0, which we verify below.

Consider any Cauchy chain w
(�)
i�

,w
(�+1)
i�+1

, . . . ,w
(�′)
i�′ in the above setting. We need to verify

that

(70) q(w) · A2,k

(
W(1), . . . , Ŵ (s), . . . ,W(m); z0, . . . , zm−1

)|
w

(�)
i�

=w
(�+1)
i�+1

=···=w
(�′)
i
�′ =w

is analytic at w = 0, for any fixed other w-variables in �0, and fixed (z0, . . . , zm−1) ∈
D(rmax ) × D

m−1. If w
(s−1)
k does not appear in this Cauchy chain, then the analyticity of

(70) follows from the fact that

q(w) · A(W(1), . . . ,W(m); z0, . . . , zm−1
)|

w
(�)
i�

=w
(�+1)
i�+1

=···=w
(�′)
i
�′ =w
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is analytic at w = 0 by the proposition assumption. If w
(s−1)
k appears in this Cauchy chain, it

must be the last variable in the path since k does not appear in I (s−1) \ {k}. Then

(70) = (−1)k+b · 1

1 − zs−1
· h1(w)

· q(w) · A(W(1), . . . ,W(m); z0, . . . , zm−1
)|

w
(�)
i�

=···=w
(s−1)
k =w

(s)
1 =w

.

(71)

On the other hand, (k,1) ∈ I (s−1) ×J (s). Thus w
(�)
i�

, . . . ,w
(s−1)
k ,w

(s)
1 is a Cauchy chain in the

original proposition setting. By the assumption of the proposition, (71) is analytic at w = 0
since q(w) dominates A at w = 0. This finishes the verification of the analyticity of (70).

We also note that |I (s−1) × J (s)| after modification becomes |(I (s−1) \ {k}) × (J (s) \ {1})|
which is smaller. Thus, we could apply the induction hypothesis for each k. These imply that
G2,k(z0, . . . , zm−1) is analytic for (z0, . . . , zm−1) ∈ D(rmax ) ×D

m−1 and

G2,k(0, z1, . . . , zm−1)

= ∏
1≤i�≤n�
2≤�≤m

(i�,�) �=(1,s)

[
1

1 − z�−1

∫
�in

�

dw
(�)
i�

2π i
− z�−1

1 − z�−1

∫
�out

�

dw
(�)
i�

2π i

]
·

n1∏
i1=1

∫
�1

dw
(1)
i1

2π i

· H2,k

(
W(1), . . . , Ŵ (s), . . . ,W(m);0, z1, . . . , zm−1

)
.

(72)

Thus, their sum
∑

k G2,k is also analytic for (z0, . . . , zm−1) ∈ D(rmax ) × D
m−1. Moreover,

by inserting the formula (68), it is direct to show

H2,k

(
W(1), . . . , Ŵ (s), . . . ,W(m);0, z1, . . . , zm−1

)
= − 1

1 − zs−1
Res

(
H
(
W(1), . . . ,W(m);0, z1 · · · , zm−1

)
,w

(s)
1 = w

(s−1)
k

)
.

Note that

− 1

1 − zs−1

a∑
k=1

Res
(
H
(
W(1), . . . ,W(m);0, z1 · · · , zm−1

)
,w

(s)
1 = w

(s−1)
k

)

=
[

1

1 − zs−1

∫
�in

s

dw
(s)
1

2π i
− 1

1 − zs−1

∫
�out

s

dw
(s)
1

2π i

]
H
(
W(1), . . . ,W(m);0, z1 · · · , zm−1

)
provided all w

(s−1)
i variables are on the contours �in

s−1 ∪ �out
s−1 since these two contours lie

between �out
s and �in

s . By plugging the above calculations in the formula (72), we have

a∑
k=1

G2,k(0, z1, . . . , zm−1)

= ∏
1≤i�≤n�
2≤�≤m

(i�,�) �=(1,s)

[
1

1 − z�−1

∫
�in

�

dw
(�)
i�

2π i
− z�−1

1 − z�−1

∫
�out

�

dw
(�)
i�

2π i

]
·

n1∏
i1=1

∫
�1

dw
(1)
i1

2π i

·
[

1

1 − zs−1

∫
�in

s

dw
(s)
1

2π i
− 1

1 − zs−1

∫
�out

s

dw
(s)
1

2π i

]
· H (

W(1), . . . ,W(m);0, z1 · · · , zm−1
)
.

(73)
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6.2.4. Finishing the inductive step. Now we combine the results in Sections 6.2.2 and
6.2.3. We know that G(z0, . . . , zm−1) = G1(z0, . . . , zm−1) +∑a

k=1 G2,k(z0, . . . , zm−1) is an-
alytic for (z0, . . . , zm−1) ∈ D(rmax ) × D

m−1. Moreover, by the formulas (69) and (73) we
have G(0, z1, . . . , zm−1) equals

∏
1≤i�≤n�
2≤�≤m

[
1

1 − z�−1

∫
�in

�

dw
(�)
i�

2π i
− z�−1

1 − z�−1

∫
�out

�

dw
(�)
i�

2π i

]
·

n1∏
i1=1

∫
�1

dw
(1)
i1

2π i

· H (
W(1), . . . ,W(m);0, z1 · · · , zm−1

)
for any nested simple closed contours �out

m , . . . ,�out
2 ,�1,�

in
2 , . . . ,�in

m in �̃ enclosing 0.

By using the analyticity of H for w
(�)
i�

in �0, we could deform these contours freely to �0
without changing their orders. This finishes the induction.

7. Proofs of Theorems 2.19 and 2.22. We first translate the height function of TASEP
into the language of particle locations. It is known that they have the following equivalence
relation:2

(74) H(n,T ) ≥ a ⇐⇒ x a−n
2

(T ) ≥ n

for any integers a and n with the same parity, provided the initial height function is defined
such that

(75) H(n,0) ≥ a ⇐⇒ x a−n
2

(0) ≥ n.

The proof of this equivalence relation can be found in, for examples, [5, 7]. Here in order
to avoid confusion we use xk(t), instead of xk(t), to denote the location of the particle with
label k at time t .

We first assume τ1 < · · · < τm. In this case we only prove Theorem 2.19, the proof of
Theorem 2.22 is similar. The only difference is that we need to use Proposition 2.16 for the
flat case instead of Theorem 2.1 for the step case.

We consider the step initial condition defined by (22). This corresponds to, by using (75),

yi = xi (0) = −i, i = 1,2, . . . .

Note that the desired probability, by using the relation (74),

Pstep

(
m⋂

�=1

{
H(2x�T

2/3,2τ�T ) − τ�T

−T 1/3 ≤ h�

})
= Pstep

(
m⋂

�=1

{
xk�

(t�) ≥ a�

})

with3

(76) a� = 2x�T
2/3, k� = 1

2
τ�T − x�T

2/3 − 1

2
h�T

1/3, t� = 2τ�T .

2There is a freedom to decide the particle or empty site corresponding to H(0,0), hence the equivalence relation
may have different formulations upon a translation. More explicitly, for any fixed integer C and C′, we could
formulate the equivalence relation as H(n,T ) ≥ a ⇐⇒ x a−n

2 +C(T ) ≥ n+C′ by simply translating all the particle

locations by C′ and their labels by C from the beginning, as long as the initial height function matches the particle
locations H(n,0) ≥ a ⇐⇒ x a−n

2 +C(0) ≥ n + C′.
3To be precise, we need to assume that all the numbers k� and a� are integers or use their integer parts [k�]

and [a�] in the argument. However, in the asymptotics an O(1) perturbation on the a� or k� does not change the
desired limit. Hence, we just use k� and a� with the formula (76) in the argument without assuming that they are
integers.
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Now we take N = max{k� : � = 1, . . . ,m}. The above probability only depends on the
initial locations of the particles with labels less than or equal to N . Thus,

Pstep

(
m⋂

�=1

{
xk�

(t�) ≥ a�

})= PYstep

(
m⋂

�=1

{
xk�

(t�) ≥ a�

})
with

Ystep = (y1, . . . , yN) = (−1,−2, . . . ,−N) ∈ XN.

By applying Theorem 2.1, it is sufficient to show that

lim
T →∞

∮
· · ·

∮ [
m−1∏
�=1

1

1 − z�

]
det(I −K1KYstep)

dz1

2π iz1
· · · dzm−1

2π izm−1

=
∮

· · ·
∮ [

m−1∏
�=1

1

1 − z�

]
det(I − K1Kstep)

dz1

2π iz1
· · · dzm−1

2π izm−1
,

(77)

where we used the Fredholm determinant representation for DYstep(z1, . . . , zm−1) in Sec-
tion 2.1.3.2.

Recall that fi(w) is defined in terms of Fi(w) in (9), and by Proposition 2.11 the Fredholm
determinant det(I −K1KYstep) is unchanged if we replace Fi(w) by

F̃i(w) := Fi(w)

Fi(−1/2)
.

Hence, we could replace fi(w) by

(78) f̃i(w) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F̃i(w)

F̃i−1(w)
, w ∈ �L \ {−1},

F̃i−1(w)

F̃i(w)
, w ∈ �R \ {0}

without changing the Fredholm determinant. Then we apply a conjugation for the kernels and
reduce (77) to a new equation

lim
T →∞

∮
· · ·

∮ [
m−1∏
�=1

1

1 − z�

]
det(I − K̃1K̃Ystep)

dz1

2π iz1
· · · dzm−1

2π izm−1

=
∮

· · ·
∮ [

m−1∏
�=1

1

1 − z�

]
det(I − K̃1K̃step)

dz1

2π iz1
· · · dzm−1

2π izm−1
,

(79)

where the new kernels

K̃Ystep

(
w′,w

)= (
δj (i) + δj

(
i − (−1)j

))√f̃j (w′)
√

f̃i(w)

w′ − w
Q2(i),

K̃1
(
w,w′)= (

δi(j) + δi

(
j + (−1)i

))√f̃j (w′)
√

f̃i(w)

w − w′ Q1(j),

for all w ∈ (�i,L ∪ �i,R) ∩ S1 and w′ ∈ (�j,L ∪ �j,R) ∩ S2, and

K̃step
(
ζ ′, ζ

)= (
δj (i) + δj

(
i − (−1)j

))√fj (ζ ′)
√

fi (ζ )

−ζ ′ + ζ
Q2(i),

K̃1
(
ζ, ζ ′)= (

δi(j) + δi

(
j + (−1)i

))√fj (ζ ′)
√

fi (ζ )

ζ − ζ ′ Q1(j),



MULTIPOINT DISTRIBUTION OF TASEP 1305

for all ζ ∈ (Ci,L ∪Ci,R)∩S1 and ζ ′ ∈ (Cj,L ∪Cj,R)∩S2. The reason we do these conjugations
is to ensure the kernels decay sufficiently fast on each variable. We also remark that the choice
of the branch cut of the square root does not affect the product of two kernels since each
square root term will appear twice when one evaluates the Fredholm determinant.

The proof of (79) follows from the two lemmas below.

LEMMA 7.1. Assume the scaling (76). For each n and fixed z1, . . . , zm−1 ∈ D= {z ∈ C :
|z| < 1}, we have

lim
T →∞ Tr(K̃1K̃Ystep)

n = Tr(K̃1K̃step)
n.

LEMMA 7.2. Assume the scaling (76). There exists a constant C which does not depend
on T and n such that∣∣∣∣∫S1

dμ(w1) · · ·
∫
S1

dμ(wn)det
[
(K̃1K̃Ystep)(wi,wj )

]n
i,j=1

∣∣∣∣< Cn.

The proof of both lemmas are standard. Below we just provide the main ideas and neces-
sary calculations, and omit most of the details.

We analyze the function f̃i(w). Recall (78), f̃i(w) is defined by F̃i(w) functions with

F̃i(w) = wki (w + 1)−ai−ki etiw

(−1/2)ki (1/2)−ai−ki e−ti/2 .

By inserting (76), we have

F̃i(w) = exp
((

1

2
τiT − xiT

2/3 − 1

2
hiT

1/3
)

log(−2w)

−
(

1

2
τiT + xiT

2/3 − 1

2
hiT

1/3
)

log(2w + 2) + 2τiT (w + 1/2)

)
.

A direct calculation shows that the critical point of F̃i(w) is w = −1
2 . Moreover, by using

Taylor’s expansion, we have

F̃i

(
−1

2
+ ζ

2T 1/3

)
≈ Fi(ζ ) = exp

(
−1

3
τiζ

3 + xiζ
2 + hiζ

)
.

Here the function Fi (ζ ) is defined in (27). Now we deform the contours �out
m,L, . . . ,�out

2,L,
�1,L, �in

2,L, . . . ,�in
m,L to be sufficiently close to −1/2 (and still enclosing −1), such that

near the point −1/2 after the change of variable w = −1
2 + ζ

2T 1/3 these contours locally

converge to Cout
m,L, . . . ,Cout

2,L, C1,L, Cin
2,L, . . . ,Cin

m,L, respectively. We similarly deform the con-
tours �out

m,R, . . . ,�out
2,R, �1,R, �in

2,R, . . . ,�in
m,R to be sufficiently close to −1/2 such that near

−1/2 they locally converge to Cout
m,R, . . . ,Cout

2,R, C1,R, Cin
2,R, . . . ,Cin

m,R respectively. Note that
the orientations of C�

�,R contours are reversed compared to ��
�,R contours. Here � represents

the superscript out or in or empty superscript. This reversed orientation will contribute to the
different signs between the kernels K̃Ystep and K̃step.

With the above deformations, it is easy to check that f̃i(w) ≈ fi(ζ ) for ζ ∈ S1 ∪ S2. Thus
locally we have K̃Ystep(w

′,w) ≈ −2T 1/3K̃step(ζ
′, ζ ) and K̃1(w,w′) ≈ 2T 1/3K̃1(ζ, ζ ′) for

w = −1
2 + ζ

2T 1/3 and w′ = −1
2 + ζ ′

2T 1/3 . On the other hand, it is direct to see that the ker-

nels K̃Ystep and K̃1 decay super-exponentially fast when w,w′ is away from −1/2 along the

contours in S1 and S2. Hence the main contribution of Tr(K̃1K̃Ystep)
n comes from a small

neighborhood of −1/2. This heuristically implies Tr(K̃1K̃Ystep)
n ≈ Tr(K̃1K̃step)

n. The same
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argument heuristically implies the boundness Tr(K̃1K̃Ystep)
n. By using these facts, it is stan-

dard to prove both lemmas we list above. This proves Theorem 2.19.
Finally, we address the general case for τ1 ≤ · · · ≤ τm with xi < xi+1 when τi = τi+1.

Note that the limiting field limT →∞ H(2xT 2/3,2τT )

−T 1/3 = H(x, τ ), the KPZ fixed point [35], is
continuous in both x and τ . On the other hand, we have shown Dstep and Dflat are continuous
on the parameters h�, x�, τ�, � = 1, . . . ,m in the domain τ� ≤ τ�+1 or all � and x� < x�+1
for � satisfying τ� = τ�+1. Hence, Fstep and Fflat as we defined in Theorems 2.19 and 2.22
are both continuous on these parameters in this domain. By the continuity of the KPZ fixed
point, we immediately obtain the limit theorems for the general case.

It is also possible to prove the general case directly. Below we provide the ideas of the
proof but ignore the technical details.

For the step case, there is no change in the proof if we use the contours �in
�,R,�out

�,R,

2 ≤ � ≤ m, and �1,R with the new angles e±π i/5∞ since the functions f̃i still decay super-
exponentially fast along these new contours. For the flat case, we need to rewrite the trace
or determinant in Lemmas 7.1 and 7.2 as an expansion of a combination of integrals as in
Dn,Yflat in (20). Then we do the same rewriting as in (29) and (30). We end with 2n2+···+nm

possible integrals of the structure

∑ ∏
some i�

�≥2

∫
�out

�,L

du
(�)
i�

2π i

n1∏
i1=1

∫
�1,L

du
(1)
i1

2π i

·
m∏

�=2

n�∏
i�=1

[
1

1 − z�−1

∫
�in

�,R

dv
(�)
i�

2π i
− z�−1

1 − z�−1

∫
�out

�,R

dv
(�)
i�

2π i

]
·

n1∏
i1=1

∫
�1,R

dv
(1)
i1

2π i
.

(80)

Here we ignored the integrand similarly as in (30). With the assumptions on the contours, we
have (80) converges to (30). Adding these combinations gives Lemma 7.1. For Lemma 7.2
it follows from the fact that the integrand decays super-exponentially fast along the contours
for each possible expression (80). So we have the a bound of Cn · 2n2+···+nm . On the other
hand, the expansion of det[(K̃1K̃Ystep)(wi,wj )]ni,j=1 only involves terms Dn,Yflat satisfying
n1 + · · · + nm = n. Thus Cn · 2n2+···+nm ≤ (2C)n and Lemma 7.2 follows immediately.

8. Proof of propositions. Before proving the propositions in Section 2, we introduce
one lemma.

LEMMA 8.1. Suppose m ≥ 1 is an integer, and n1, . . . , nm ≥ 0 are m nonnegative in-
tegers. For each 1 ≤ � ≤ m, W(�) = (w

(�)
1 , . . . ,w

(�)
n� ) ∈ C

n� is a vector of n� complex vari-
ables. Assume � is a simply connected domain in C and a ∈ � is a point in �. Suppose
F(W(1), . . . ,W(m)) is a function analytic for each variable w

(�)
i�

∈ � \ {a}, 1 ≤ i� ≤ n�,1 ≤
� ≤ m. Suppose t and jt are two fixed numbers such that 1 ≤ t ≤ m, nt ≥ 1, and 1 ≤ jt ≤ nt .
Assume F satisfies the following analyticity property: For any chain of variables starting or

ending at w
(t)
jt

: w
(s)
js

,w
(s+1)
js+1

, . . . ,w
(s′)
js′ with t = s ≤ s ′ or s ≤ s ′ = t , jt being fixed but each j�

(� �= t) could be an arbitrary number such that 1 ≤ j� ≤ n�, the function

F
(
W(1), . . . ,W(m))|

w
(s)
js

=w
(s+1)
js+1

=···=w
(s′)
j
s′ =w

is analytic at w = a when all other variables in � \ {a} are fixed. Then∮ dw
(1)
1

2π i
· · ·

∮ dw
(m)
nm

2π i

[
m−1∏
�=1

C
(
W(�);W(�+1))] · F (W(1), . . . ,W(m))= 0,
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where the contours of integration could be any order of nested contours enclosing a in �.
The function C is the Cauchy-type product defined in (33).

PROOF. The proof follows from a simple calculation. We first integrate the function
[∏m−1

�=1 C(W(�);W(�+1))] · F(W(1), . . . ,W(m)) with respect to w
(t)
jt

. Since this integrand as

a function of w
(t)
jt

is analytic at a except for possible poles from the Cauchy-type fac-
tors, after this integral only the (possible) residues survive. Now we evaluate the residue
at w

(t)
jt

= w
(t+1)
jt+1

(if the w
(t+1)
jt+1

contour is inside the w
(t)
jt

contour). By the assumption, if

we integrate this residue with respect to w
(t+1)
jt+1

, it is zero again except that some residues

at w
(t+1)
jt+1

= w
(t+2)
jt+2

may survive.4 We repeat this procedure and integrate the residue with re-

spect to the variable w
(t+2)
jt+2

. After finitely many steps we stop at some point that the integrand
no longer has residues. Thus after this procedure, we end at zero. Similarly, the evaluation of
the possible residue at w

(t)
jt

= w
(t−1)
jt−1

gives zero as well. This proves the lemma. �

8.1. Proof of Proposition 2.3. The proof of this proposition depends on Theorem 2.1 and
Proposition 2.17.

We prove it by using induction on |I |.
When |I | = 0, it is Theorem 2.1.
Suppose the statement holds for smaller |I |. We consider the case of |I | ≥ 1. Let s be an

element in I . It satisfies 1 ≤ s ≤ m − 1. We consider the following three objects:

P1 = PY

((⋂
j∈J

{
xkj

(tj ) ≥ aj

})∩
( ⋂

i∈I\{s}

{
xki

(ti) < ai

}))
,

P2 = PY

(( ⋂
j∈J∪{s}

{
xkj

(tj ) ≥ aj

})∩
( ⋂

i∈I\{s}

{
xki

(ti) < ai

}))
,

P3 = PY

((⋂
j∈J

{
xkj

(tj ) ≥ aj

})∩
(⋂

i∈I

{
xki

(ti) < ai

}))
.

Note the event considered in P1 is a union of the two disjoint events considered in P2 and P3.
Therefore we have P1 = P2 + P3.

On the other hand, since |I \ {s}| < |I | we could apply the induction hypothesis to I and
II . We have

P1 = (−1)|I |−1
∮ dz1

2π iz1
· · ·

∮ dzs−1

2π izs−1

∮ dzs+1

2π izs+1
· · ·

∮ dzm−1

2π izm−1

·
[ ∏

1≤�≤m−1
� �=s

1

1 − z�

]
DY (z1, . . . , zs−1, zs+1, . . . , zm−1)

and

P2 = (−1)|I |−1
∮ dz1

2π iz1
· · ·

∮ dzs−1

2π izs−1

∮ dzs

2π izs

∮ dzs+1

2π izs+1
· · ·

∮ dzm−1

2π izm−1

·
[ ∏

1≤�≤m−1

1

1 − z�

]
DY (z1, . . . , zs−1, zs, zs+1, . . . , zm−1),

4Here we remind that there are no residues of type w
(t+1)
jt+1

= w
(t)

j ′
t

since w
(t+1)
jt+1

− w
(t)

j ′
t

does not appear in the

Cauchy-type factor after our previous evaluation of residue at w
(t)
jt

= w
(t+1)
jt+1

.
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where the contours of integration are circles centered at the origin. The radius of zi contour is
larger than 1 in both P1 and P2 if i ∈ I \ {s}, otherwise it is smaller than 1. We remind that in
the term DY (z1, . . . , zs−1, zs+1, . . . , zm−1) of P1, the parameters are a�, k�, t� for 1 ≤ � ≤ m

but � �= s. This is also consistent with Proposition 2.17.
Now we apply Proposition 2.17 and obtain

P1 − P2 = (−1)|I |
∮ dz1

2π iz1
· · ·

∮ dzm−1

2π izm−1

[ ∏
1≤�≤m−1

1

1 − z�

]
DY (z1, . . . , zm−1),

where the contours are circles centered at the origin. The radius of zi is larger than 1 if i ∈ I ,
otherwise it is smaller than 1. This is equal to P3 by our argument at the beginning of the
proof. This finishes the induction.

8.2. Proof of Proposition 2.10. We will prove the proposition by using the following
lemma.

LEMMA 8.2. Suppose �out,�,�in are three nested simple closed contours in C. Let
� be an open region containing these three contours and all the points between them. As-
sume U(1) = (u

(1)
1 , . . . , u

(1)
n1 ) and U(2) = (u

(2)
1 , . . . , u

(2)
n2 ) are two vectors of variables. Here

n1, n2 ≥ 0. We also assume that F(U(1),U(2)) is an analytic function on �n1+n2 . Then for
each z �= 1, we have

n1∏
i1=1

[
1

1 − z

∫
�out

du
(1)
i1

2π i
− z

1 − z

∫
�in

du
(1)
i1

2π i

]

·
n2∏

i2=1

∫
�

du
(2)
i2

2π i
C
(
U(1);U(2))F (U(1),U(2))

=
n2∏

i2=1

[
1

1 − z

∫
�in

du
(2)
i2

2π i
− z

1 − z

∫
�out

du
(2)
i2

2π i

]

·
n1∏

i1=1

∫
�

du
(1)
i1

2π i
C
(
U(1);U(2))F (U(1),U(2)),

(81)

where C(W ;W ′) is the Cauchy-type factor defined in (33).

We will first use Lemma 8.2 to prove Proposition 2.10, then prove Lemma 8.2.
Consider Proposition 2.10. By using the series expansion formula, it is sufficient to show

that for any n = (n1, . . . , nm) ∈ (Z≥0)
m, we have

m∏
�=2

n�∏
i�=1

[
1

1 − z�−1

∫
�in

�,L

du
(�)
i�

2π i
− z�−1

1 − z�−1

∫
�out

�,L

du
(�)
i�

2π i

]
·

n1∏
i1=1

∫
�1,L

du
(1)
i1

2π i

·
[

m−1∏
�=1

C
(
U(�);U(�+1))] · F (U(1), . . . ,U(m))

=
m−1∏
�=1

n�∏
i�=1

[
1

1 − z�

∫
�̃out

�,L

du
(�)
i�

2π i
− z�

1 − z�

∫
�̃in

�,L

du
(�)
i�

2π i

]
·

nm∏
im=1

∫
�̃m,L

du
(m)
im

2π i

·
[

m−1∏
�=1

C
(
U(�);U(�+1))] · F (U(1), . . . ,U(m)),

(82)



MULTIPOINT DISTRIBUTION OF TASEP 1309

where F is any function analytic for each variable u
(�)
i�

in �L \ {−1}. The vector U(�) =
(u

(�)
1 , . . . , u

(�)
n� ) for � = 1, . . . ,m. Recall that �out

m,L, . . . ,�out
2,L, �1,L, �2,in, . . . ,�

in
m,L are

nested, and �̃out
1,L, . . . , �̃out

m−1,L, �̃m,L, �̃in
m−1,L, . . . , �̃in

1,L are also nested.

We prove (82) by induction.

If m = 2, we need to show that

n1∏
i1=1

[
1

1 − z1

∫
�̃out

1,L

du
(1)
i1

2π i
− z1

1 − z1

∫
�̃in

1,L

du
(1)
i1

2π i

]

·
n2∏

i2=1

∫
�̃2,L

du
(2)
i2

2π i
C
(
U(1);U(2))F (U(1),U(2))

=
n2∏

i2=1

[ −z1

1 − z1

∫
�out

2,L

du
(2)
i2

2π i
+ 1

1 − z1

∫
�in

2,L

du
(2)
i2

2π i

]

·
n1∏

i1=1

∫
�1,L

du
(1)
i1

2π i
C
(
U(1);U(2))F (U(1),U(2)).

This follows from Lemma 8.2 by deforming the contours appropriately.

Suppose (82) holds for m − 1 with m ≥ 3. We want to show that it holds for m. Without

loss of generality, we assume that �out
m,L is outside of all the contours �̃out

�,L, and �in
m,L is inside

all the contours �̃in
�,L. We first fix all other contours but just apply Lemma 8.2 case for the

variables U(m), U(m−1) and the contours �̃out
m−1,L, �̃m,L, �̃in

m−1,L. This gives

m−1∏
�=1

n�∏
i�=1

[
1

1 − z�

∫
�̃out

�,L

du
(�)
i�

2π i
− z�

1 − z�

∫
�̃in

�,L

du
(�)
i�

2π i

]
·

nm∏
im=1

∫
�̃m,L

du
(m)
im

2π i

·
[

m−1∏
�=1

C
(
U(�);U(�+1))] · F (U(1), . . . ,U(m))

=
m−2∏
�=1

n�∏
i�=1

[
1

1 − z�

∫
�̃out

�,L

du
(�)
i�

2π i
− z�

1 − z�

∫
�̃in

�,L

du
(�)
i�

2π i

]
·

nm−1∏
im−1=1

∫
�̃m,L

du
(m−1)
im−1

2π i

·
nm∏

im=1

[
1

1 − zm−1

∫
�̃in

m−1,L

du
(m)
im

2π i
− zm−1

1 − zm−1

∫
�̃out

m−1,L

du
(m)
im

2π i

]

·
[

m−1∏
�=1

C
(
U(�);U(�+1))] · F (U(1), . . . ,U(m)).

(83)

Then we deform the �̃out
m−1,L to �out

m,L and �̃in
m−1,L to �in

m,L. The integrand does not encounter

any poles during the deformation since the variables of U(m−1) is on �̃m,L which lies between

�̃out
m−1,L and �̃in

m−1,L. Then we apply the induction hypothesis for all other variables in U(�)
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for � �= m and all other contours �̃out
1,L, · · · , �̃out

m−2,L, �̃m,L, �̃in
m−2,L, . . . , �̃in

1,L, and obtain

m−2∏
�=1

n�∏
i�=1

[
1

1 − z�

∫
�̃out

�,L

du
(�)
i�

2π i
− z�

1 − z�

∫
�̃in

�,L

du
(�)
i�

2π i

]
·

nm−1∏
im−1=1

∫
�̃m,L

du
(m−1)
im−1

2π i

·
[

m−1∏
�=1

C
(
U(�);U(�+1))] · F (U(1), . . . ,U(m))

=
m−1∏
�=2

n�∏
i�=1

[
1

1 − z�−1

∫
�in

�,L

du
(�)
i�

2π i
− z�−1

1 − z�−1

∫
�out

�,L

du
(�)
i�

2π i

]
·

n1∏
i1=1

∫
�1,L

du
(1)
i1

2π i

·
[

m−1∏
�=1

C
(
U(�);U(�+1))] · F (U(1), . . . ,U(m))

for any fixed U(m) on (�out
m,L ∪ �in

m,L)nm . Together with (83) and the discussions above, we
immediately obtain (82). This finishes the induction.

Below we prove Lemma 8.2. We use induction on n1. If n1 = 0, the equation becomes
trivial: it follows by writing (here we omit the integrand)∫

�

du
(2)
i2

2π i
= 1

1 − z

∫
�in

du
(2)
i2

2π i
− z

1 − z

∫
�out

du
(2)
i2

2π i

since the integrand is an analytic function of u
(2)
i2

∈ �. We remark that we used such a de-
composition before in Section 6.1. See the last two equations on page 1295 and the following
discussions.

Suppose the lemma holds for n1 − 1 for some n1 ≥ 1, we want to prove the case for n1.
Consider the integral over u

(1)
n1 . We write

1

1 − z

∫
�out

du
(1)
n1

2π i
− z

1 − z

∫
�in

du
(1)
n1

2π i
=
∫
�out

du
(1)
n1

2π i
+ z

1 − z

[∫
�out

du
(1)
n1

2π i
−
∫
�in

du
(1)
n1

2π i

]
.

Then [
1

1 − z

∫
�out

du
(1)
n1

2π i
− z

1 − z

∫
�in

du
(1)
n1

2π i

]
C
(
U(1);U(2))F (U(1),U(2))

=
∫
�out

du
(1)
n1

2π i
C
(
U(1);U(2))F (U(1),U(2))

+ z

1 − z

n2∑
j=1

Res
(
C
(
U(1);U(2))F (U(1),U(2)), u(1)

n1
= u

(2)
j

)
.

By plugging the above equation into the left-hand side of (81), we obtain

(84) LHS of (81) = S1 + z

1 − z

n2∑
j=1

S2,j ,

where

S1 =
n1−1∏
i1=1

[
1

1 − z

∫
�out

du
(1)
i1

2π i
− z

1 − z

∫
�in

du
(1)
i1

2π i

]

·
n2∏

i2=1

∫
�

du
(2)
i2

2π i
·
∫
�out

du
(1)
n1

2π i
C
(
U(1);U(2))F (U(1),U(2))
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and

S2,j =
n1−1∏
i1=1

[
1

1 − z

∫
�out

du
(1)
i1

2π i
− z

1 − z

∫
�in

du
(1)
i1

2π i

]

·
n2∏

i2=1

∫
�

du
(2)
i2

2π i
Res

(
C
(
U(1);U(2))F (U(1),U(2)), u(1)

n1
= u

(2)
j

)
.

Below we consider S1 and S2,j separately.

For S1, we first deform the contour of u
(1)
n1 to some larger contour �out+ in � which encloses

�out. Then we apply induction hypothesis for other contours and obtain

S1 =
n2∏

i2=1

[
1

1 − z

∫
�in

du
(2)
i2

2π i
− z

1 − z

∫
�out

du
(2)
i2

2π i

]

·
n1−1∏
i1=1

∫
�

du
(1)
i1

2π i
·
∫
�out+

du
(1)
n1

2π i
C
(
U(1);U(2))F (U(1),U(2)).

By deforming the contour of u
(1)
n1 to �, we have

(85) S1 = RHS of (81) − z

1 − z

n2∑
j=1

Tj

with

Tj = ∏
1≤i2≤n2

i2 �=j

[
1

1 − z

∫
�in

du
(2)
i2

2π i
− z

1 − z

∫
�out

du
(2)
i2

2π i

]
·
∫
�out

du
(2)
j

2π i

·
n1−1∏
i1=1

∫
�

du
(1)
i1

2π i
Res

(
C
(
U(1);U(2))F (U(1),U(2)), u(1)

n1
= u

(2)
j

)
.

For S2,j , it is easy to verify that the function

Res
(
C
(
U(1);U(2))F (U(1),U(2)), u(1)

n1
= u

(2)
j

)
= (−1)n1+n2+j−1C

(
Û (1); Û (2)

jc

)
F
(
U(1),U(2))|

u
(1)
n1 =u

(2)
j

.

Here the notation Û (1) := (u
(1)
1 , . . . , u

(1)
n1−1) is obtained by dropping the variable u

(1)
n1 from the

vector U(1), and Û
(2)
jc = (u

(2)
1 , . . . , u

(2)
j−1, u

(2)
j+1, . . . , u

(2)
n2 ) is obtained by dropping the variable

u
(2)
j from U(2). The above expression implies that we could deform contour of u

(2)
j to �out,

and apply the induction hypothesis for other contours in S2,j . This gives S2,j = Tj . Together
with (84) and (85), we obtain (81). This finishes the induction. We finish the proof of the
lemma.

8.3. Proof of Proposition 2.12. We only prove the proposition with condition (1). The
case for the other condition is similar.
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It is sufficient to show Dn,Y (z1, . . . , zm−1) does not change if we replace K(ess)
Y (v, u) by

K(ess)
Y (v, u) +K(null)(v, u) in (16). This further reduces to prove

0 =
[

m∏
�=2

n�∏
i�=1

∫
��

�,L

du
(�)
i�

2π i

]
n1∏

i1=1

∫
�1,L

du
(1)
i1

2π i

[
m∏

�=2

n�∏
i�=1

∫
��

�,R

dv
(�)
i�

2π i

]
·

n1∏
i1=1

∫
�1

dv
(1)
i1

2π i

·K(null)(v(1)
i , u

(1)
j

)[m−1∏
�=1

C
(
U(�);U(�+1))C(V (�);V (�+1))]F

(
U(1), . . . , V (m))(86)

for any 1 ≤ i, j ≤ n1. Here the function C(W ;W ′) represents the Cauchy-type factor defined
in (33). The function F(U(1), . . . , V (m)) = F̃ (U(1), . . . , V (m)) ·∏m

�=1 f�(V
(�)) for some func-

tion F̃ which is analytic for each v
(�)
i�

∈ �R when � ≥ 1. The symbol � represents any choice
of “out” or “in” in the contours of integration ��

�,L and ��
�,R.

The proof of (86) is a slight modification of that for Lemma 8.1. We provide the details
below for the completeness.

We consider the double integral with respect to v
(1)
i and u

(1)
j . Recall the formulas of fi

defined in (9). We have f1(v
(1)
i ) = (v

(1)
i )−k1(v

(1)
i +1)a1+k1e−t1v

(1)
i . By applying the condition

(1) of K(null)
Y , we know that the double integral with respect to v

(1)
i and u

(1)
j equals zero if the

contour of v
(1)
i could be deformed sufficiently small to 0. Thus, the original double integral

with respect to v
(1)
i and u

(1)
j only gives the possible residues at v

(1)
i = v

(2)
i′ . By evaluating this

residue, we obtain a new integrand K(null)(v
(2)
i′ , u

(1)
j )[f1(v

(2)
i′ )f2(v

(2)
i′ )] multiplied by some

other factors. Note that f1(v
(2)
i′ )f2(v

(2)
i′ ) = (v

(2)
i′ )−k2(v

(2)
i′ + 1)a2+k2e

−t2v
(2)

i′ . Thus, the double

integral with respect to v
(2)
i′ and u

(1)
j equals zero if the contour for v

(2)
i′ could be deformed to

sufficiently close to 0. We only need to evaluate the possible residues for v
(2)
i′ = v

(3)
i′′ . After

finitely many steps, there are no poles of this type within the contours and the last double
integral becomes 0.

8.4. Proof of Proposition 2.13. By inserting the definition of K(ess)
Y (v, u), it is equivalent

to prove ∮
0
v−i (v + 1)λi · 1

v − u
· χλ(v, u)

dv

2π i
= −u−i (u + 1)λi ,

where λ1 ≥ · · · ≥ λN = λN+1 = · · · = 0. Now we fix 1 ≤ i ≤ N and assume the integral
contour is small enough such that |v| < |u|. It is sufficient to show, by approximating the
integral using summation

(87) lim
M→∞

1

M

M∑
j=1

(
vξj )−i+1(

vξj + 1
)λi · 1

vξj − u
χλ
(
vξj , u

)= −u−i(u + 1)λi ,

where ξ = e
2π i
M .

We first reformulate the factor 1/(vξj − u). By applying the Vandermonde determinant
formula, we obtain

det[(vξα)−β1α �=j + u−β1α=j ]Mα,β=1

det[(vξα)−β]Mα,β=1

= vM

uM
·
∏

α �=j (u − vξα)∏
α �=j (vξj − vξα)

.
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Moreover, by using the property of ξ , it is easy to see

∏
α �=j

(
u − vξα)= uM − vM

u − vξj
,
∏
α �=j

(
vξj − vξα)= M

(
vξj )M−1 = MvM

vξj
.

Thus we have

(88)
1

vξj − u
= − M

vξj
· uM

uM − vM
· det[(vξα)−β1α �=j + u−β1α=j ]Mα,β=1

det[(vξα)−β]Mα,β=1

.

On the other hand, by applying the Cramer’s rule, we have

M∑
j=1

(
vξj )−i(

vξj + 1
)λi

det[(vξα)−β(vξα + 1)λβ 1α �=j + u−β(u + 1)λβ 1α=j ]Mα,β=1

det[(vξα)−β(vξα + 1)λβ ]Mα,β=1

= u−i (u + 1)λi .

Thus if M ≥ |λ|, by using the formula of χλ(vξj , u) in (13) we obtain

M∑
j=1

(
vξj )−i(

vξj + 1
)λi · χλ

(
vξj , u

) · det[(vξα)−β1α �=j + u−β1α=j ]Mα,β=1

det[(vξα)−β(vξα + 1)λβ ]Mα,β=1

= u−i (u + 1)λi .

(89)

Now we combine (88) and (89) and get

M∑
j=1

(
vξj )−i+1(

vξj + 1
)λi · 1

vξj − u
χλ
(
vξj , u

)

= −u−i(u + 1)λi · MuM

uM − vM
· det[(vξα)−β(vξα + 1)λβ ]Mα,β=1

det[(vξα)−β]Mα,β=1

= −u−i(u + 1)λi · MuM

uM − vM

for M ≥ |λ|. Here we used the fact that
det[(vξα)−β(vξα+1)

λβ ]Mα,β=1

det[(vξα)−β ]Mα,β=1
= χλ(v, v) = 1. Together

with the fact that vM/uM → 0, we obtain (87) immediately.

8.5. Proof of Proposition 2.14. In order to evaluate K(ess)
Ypf

, we need to consider the func-
tion χλ(Ypf)(v, u). Recall the formula (14), we write

χλ(Ypf)(v, u) = Gλ(Ypf)

(
u, vξ, . . . , vξN−1)+ vN · r1(v, u),

where ξ = e2π i/N , and r1(v, u) is some polynomial. It turn out that

(90) Gλ(Ypf)

(
u, vξ, . . . , vξN−1)= 2v + 1

u + v + 1
·
(

u + 1

v + 1

)N

+ vN · r2(v, u)

for some function r2(v, u) which is analytic for (v, u) satisfying |v| < {1/2, |u + 1|}. By
combing the above two equations and using the definition of K(ess)

Ypf
we prove the proposition

immediately.
It remains to prove (90). We show it below.
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Note that the function λ(Ypf) = (λ1, . . . , λN) with λi = (yi + i)− (yN +N) = N − i. Thus

Gλ(Ypf)(w1, . . . ,wN) = det[w−j
i (1 + wi)

N−j ]Ni,j=1

det[w−j
i ]Ni,j=1

.

By applying the Vandermonde determinant formula, we have

Gλ(Ypf)(w1, . . . ,wN) = ∏
i<j

wj (wj + 1) − wi(wi + 1)

wj − wi

= ∏
1≤i<j≤N

(wi + wj + 1).

As a result, Gλ(Y )(u, vξ, . . . , vξN−1) can be expressed as

(91) Gλ(Y )

(
u, vξ, . . . , vξN−1)= ∏

1≤j≤N−1

u + 1 + vξj

v + 1 + vξj
· ∏

0≤i<j≤N−1

(
vξ i + vξj + 1

)
.

We remark that our assumption of |v| < 1/2 guarantees v +1+vξj �= 0 for each j . Note that
the last product is invariant under v → vξj for any j , therefore

(92)
∏

0≤i<j≤N−1

(
vξ i + vξj + 1

)= 1 + vN · r3
(
vN )

for some polynomial r3. Moreover, the following two identities hold since ξ is the root of
unity:

N−1∏
j=0

(
u + 1 + vξj )= (u + 1)N − (−v)N,

N−1∏
j=0

(
v + 1 + vξj )= (v + 1)N − (−v)N .

Thus ∏
1≤j≤N−1

u + 1 + vξj

v + 1 + vξj

= 2v + 1

u + v + 1
· (u + 1)N − (−v)N

(v + 1)N − (−v)N
= 2v + 1

u + v + 1
·
(

u + 1

v + 1

)N

· (1 + vNr4(v, u)
)
,

(93)

where

r4(v, u) = (−1)N

(u + 1)N
· (u + 1)N − (v + 1)N

(v + 1)N − (−v)N

is also analytic in |v| < min{1/2, |u + 1|}. (90) follows from combing (91), (92) and (93).

8.6. Proof of Proposition 2.15. In this section we prove Proposition 2.15. The proof is
based on a Cauchy chain argument similar to that of Lemma 8.1 and a deformation of contour.

As we discussed before the proposition, we could combine Propositions 2.14 and 2.12 and
replace the original kernel K(ess)

Ypf
(v, u) by the following kernel:

K(ess,1)
Ypf

(v, u) = 2v + 1

(v − u)(u + v + 1)

if we choose the contours described below. The contours �̂out
m,R, . . . , �̂out

2,R, �̂1,R, �̂in
2,R, . . . ,

�̂in
m,R are nested contours within the region D(1/2) = {v : |v| < 1/2}, and the contours

�̂out
m,R, . . . , �̂out

2,R, �̂1,R, �̂in
2,R, . . . , �̂in

m,R are nested contours around −1 satisfying �̂1,L is out-

side of −1 − �̂1,R = {−1 − v : v ∈ �̂1,R} and �̂in
2,L is inside −1 − �̂1,R.
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Now we evaluate Dn,Ypf below

Dn,Ypf(z1, . . . , zm−1) =
m∏

�=1

n�∏
i�=1

∫
��,L

dμz
(
u

(�)
i�

) ∫
��,R

dμz
(
v

(�)
i�

)

·
[
(−1)n1(n1+1)/2 �(U(1);V (1))

�(U(1))�(V (1))
det

[
K(ess,1)

Ypf

(
v

(1)
i , u

(1)
j

)]n1
i,j=1

]

·
[

m∏
�=1

(�(U(�)))2(�(V (�)))2

(�(U(�);V (�)))2 f�

(
U(�))f�

(
V (�))]

·
[

m−1∏
�=1

�(U(�);V (�+1))�(V (�);U(�+1))

�(U(�);U(�+1))�(V (�);V (�+1))
(1 − z�)

n�

(
1 − 1

z�

)n�+1
]
.

Recall that we assume a1 + k1 ≤ 0 in this proposition. Therefore the function f1(u) =
uk1(u+1)−a1−k1et1u is analytic at u = −1. After we integrate u

(1)
i1

along �̂1,L, only two types

of residues survive: u
(1)
i1

= −v
(1)
j1

− 1 for some 1 ≤ j1 ≤ n1, or u
(1)
i1

= u
(2)
i2

∈ �̂in
2,L for some

1 ≤ i2 ≤ n2. These two types of residues come from the term K(ess,1)
Ypf

(v
(1)
j1

, u
(1)
i1

) and 1
u

(1)
i1

−u
(2)
i2

respectively. We claim that the second type of residues contribute a zero. In fact, after evaluat-
ing the residue at u

(1)
i1

= u
(2)
i2

, the integrand has the form K(ess,1)
Ypf

(v
(1)
j1

, u
(2)
i2

) ·f1(u
(2)
i2

)f2(u
(2)
i2

) ·
1

�(U(2);U(3))
times some function analytic for u

(2)
i2

inside the region bounded by the contour

�̂in
2,L. This integrand again is analytic at u

(2)
i2

= −1 since f1(u)f2(u) = uk2(u + 1)−a2−k2et2u

and a2 + k2 ≤ 0 by our assumption. Hence, we only need to evaluate the residues of u
(2)
i2

.

Now due to the assumption that �in
2,L is inside −1 − �1,R, there is only one type of residues

u
(2)
i2

= u
(3)
i3

for some i3. We repeat this procedure and finally will stop at some step when no
residues are inside the contour. This procedure ends with no nonzero contribution. Thus, the
claim is true.

Now the above argument implies that the integral with respect to u
(1)
i1

only gives the

residues at u
(1)
i1

= −v
(1)
j1

−1 from K(ess,1)
Ypf

(v
(1)
j1

, u
(1)
i1

). Therefore, this integral is the same as an

integral along −1 − �1,R with the kernel K(ess,1)
Ypf

(v
(1)
j1

, u
(1)
i1

) replaced by δ(−v
(1)
j1

− 1, u
(1)
i1

).

Therefore, Dn,Ypf does not change if we replace the contour �̂1,L by −1−�̂1,R and the kernel

K(ess,1)
Ypf

(v, u) by δ(−v − 1, u). These replacements also do not change DYpf . With this new

kernel, we are free to deform the contours �̂1,R, �̂in
�,R, �̂out

�,R and �̂in
�,L, �̂out

�,L, 2 ≤ � ≤ m, to
�1,R,�in

�,R, �out
�,R and �in

�,L, �out
�,L, 2 ≤ � ≤ m, respectively. This finishes the proof.

8.7. Proof of Proposition 2.17. By using the series expansion of DY in Definition 2.7,
we only need to show∑

ns+1≥0

1

((ns+1)!)2

[∮
|zs |<1

dzs

2π izs

−
∮
|zs |>1

dzs

2π izs

]
1

1 − zs

Dn,Y (z1, . . . , zm−1)

= Dn̂,Y

(
z1, . . . , zs−1, zs+1, . . . , zm−1; (a1, k1, t1), . . . , (as−1, ks−1, ts−1),

· (as+1, ks+1, ts+1), . . . , (am, km, tm)
)
.

(94)

Here the vector n̂ := (n1, . . . , ns, ns+2, . . . , nm) is the vector obtained by removing ns+1
from n. We also list the parameters (a�, k�, t�) (� �= s) to avoid possible confusion.
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By dropping common factors in the series expansion formula of both sides of (94), it is
sufficient to show∑

ns+1≥0

1

((ns+1)!)2

[∮
|zs |<1

dzs

2π izs

−
∮
|zs |>1

dzs

2π izs

]

·
ns+1∏
i=1

[∫
�in

s+1,L

du
(s+1)
i

2π i
− zs

∫
�out

s+1,L

du
(s+1)
i

2π i

]

·
ns+1∏
i=1

[∫
�in

s+1,R

dv
(s+1)
i

2π i
− zs

∫
�out

s+1,R

dv
(s+1)
i

2π i

]
· (1 − zs)

ns−ns+1−1z
−ns+1
s (1 − zs+1)

ns+1

· C
(
U(s);U(s+1))C(V (s);V (s+1))B(U(s),U(s+1);V (s),V (s+1))

= (1 − zs+1)
nsB

(
U(s),U(s);V (s),V (s))

(95)

for any function B(U(s),U(s+1);V (s),V (s+1)) which satisfies (a) it is analytic for u
(s+1)
i be-

tween the contours �out
s+1,L and �in

s+1,L, and v
(s+1)
i between the contours �out

s+1,R and �in
s+1,R,

1 ≤ i ≤ ns+1, and (b) it is anti-symmetric for u
(s+1)
1 , . . . , u

(s+1)
ns+1 , and anti-symmetric for

v
(s+1)
1 , . . . , v

(s+1)
ns+1 . In other words, exchanging two variables u

(s+1)
i and u

(s+1)
j in B only

gives a sign change, and so is the exchanging of v
(s+1)
i and v

(s+1)
j . The function C(W ;W ′)

is the Cauchy-type factor defined in (33).
We write the summand on the left-hand side of (95) as (1− zs+1)

ns+1 ·Bns+1 . The equation
(95) follows from the following identity:

(96) Bns+1 =
{
B
(
U(s),U(s);V (s),V (s)), ns+1 = ns,

0, otherwise.

It remains to prove (96). We prove it by considering all the three cases below.
Case (1). ns+1 < ns .
This case is trivial. The zs integral is zero since the integrand is analytic at zs = 1: there is

no pole between the contours |zs | < 1 and |zs | > 1.
Case (2). ns+1 > ns .
zs = 1 is a pole of order ns+1 − ns + 1. Thus, the integral of zs gives

Bns+1

= c · dns+1−ns

dz
ns+1−ns
s

∣∣∣∣
zs=1

(
z
−ns+1
s

ns+1∏
i=1

[∫
�in

s+1,L

−zs

∫
�out

s+1,L

] ns+1∏
i=1

[∫
�in

s+1,R

−zs

∫
�out

s+1,R

])

· (−1)ns−ns+1C
(
U(s);U(s+1))C(V (s);V (s+1))B(U(s),U(s+1);V (s),V (s+1))

for some constant c = 1
((ns+1)!)2(ns+1−ns)! . Here for the sake of saving space, we omit the

integral symbols
du

(s+1)
i

2π i in the integrals
∫
�in

s+1,L
and

∫
�out

s+1,L
, and

dv
(s+1)
i

2π i in
∫
�in

s+1,R
and∫

�out
s+1,R

. Note that there are 2ns+1 integrals of the form
∫
�out

s+1,�
−zs

∫
�in

s+1,�
for � ∈ {L,R}.

After the ns+1 − ns times of differentiation with respect to zs , there are still at least
2ns+1 − (ns+1 − ns) = ns + ns+1 integrals of the form

∫
�out

s+1,�
− ∫

�in
s+1,�

survive (with

zs = 1). On the other hand, each integral
∫
�out

s,�
− ∫

�in
s,�

is either zero or equals some residue
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at u
(s+1)
i = u

(s)
i′ or v

(s+1)
i = v

(s)
i′ . It is easy to count the maximal possible numbers of these

residues from C(U(s);U(s+1)) and C(V (s);V (s+1)) are both min{ns, ns+1}. With our assump-
tion, ns + ns+1 > 2 min{ns, ns+1}. Thus, there exists at least one integral

∫
�out

s+1,�
− ∫

�in
s+1,�

,

which survives from the zs differentiation, does not contribute any residue from the Cauchy-
type factors. This integral is zero. Thus Bns+1 = 0.

Case (3). ns+1 = ns . Similar to the Case (2), we have

Bns+1 = 1

((ns+1)!)2

ns+1∏
i=1

[∫
�in

s+1,L

du
(s+1)
i

2π i
−
∫
�out

s+1,L

du
(s+1)
i

2π i

]

·
ns+1∏
i=1

[∫
�in

s+1,R

dv
(s+1)
i

2π i
−
∫
�out

s+1,R

dv
(s+1)
i

2π i

]
· C

(
U(s);U(s+1))C(V (s);V (s+1))B(U(s),U(s+1);V (s),V (s+1)).

The nonzero contributions come from the residues of

Res
(
C
(
U(s);U(s+1))C(V (s);V (s+1))B(U(s),U(s+1);V (s),V (s+1)),

U(s+1) = σ
(
U(s)),V (s+1) = σ ′(V (s)))(97)

for some permutations σ,σ ′ ∈ Sns+1 , where σ(W) denotes the permuted vector W by σ .
More precisely, if W = (w1, . . . ,wn) and σ ∈ Sn, then σ(W) := (wσ(1), . . . ,wσ(n)). More-
over, we used a more general notation of the residue. It could be understood as a composi-
tion of taking residues one by one. For example, Res(f (w1,w2),w1 = c1,w2 = c2) means
Res(Res(f (w1,w2),w1 = c1),w2 = c2).

Since B(U(s),U(s+1);V (s),V (s+1)) is anti-symmetric on the coordinates of U(s+1), and
on the coordinates of V (s+1), it is a direct to verify that the residue (97) is independent of the
choices of σ and σ ′. There are ((ns+1)!)2 choices of σ and σ ′. Thus

Bns+1

= (−1)2ns+1 Res
(
C
(
U(s);U(s+1))C(V (s);V (s+1))B(U(s),U(s+1);V (s),V (s+1)),

U(s+1) = U(s),V (s+1) = V (s))
= B

(
U(s),U(s);V (s),V (s)).

This finishes the proof.

8.8. Proof of Proposition 2.18. When s = m, note that

(1 − zm−1)
nm−1Dñ,Y (z1, . . . , zm−2) =Dn,Y (z1, . . . , zm−1)

with n = (n1, . . . , nm−1,0) and ñ = (n1, . . . , nm−1). Thus, we just need to prove that if
nm ≥ 1

0 =
[

m∏
�=2

n�∏
i�=1

∫
��

�,L

du
(�)
i�

2π i

]
n1∏

i1=1

∫
�1,L

du
(1)
i1

2π i

[
m∏

�=2

n�∏
i�=1

∫
��

�,R

dv
(�)
i�

2π i

]
·

n1∏
i1=1

∫
�1,R

dv
(1)
i1

2π i

·
[

m−1∏
�=1

C
(
U(�);U(�+1))C(V (�);V (�+1))]F

(
U(1), . . . , V (m)).

(98)

Here the function C(W ;W ′) represents the Cauchy-type factor defined in (33). The function

F
(
U(1), . . . , V (m))= F̃

(
U(1), . . . , V (m)) ·

(
n1∏

i1=1

u
(1)
i1

+ 1

v
(1)
i1

+ 1

)yN+N

·
m∏

�=1

f�

(
U(�))f�

(
V (�))
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for some function F̃ which is analytic for each u
(�)
i�

∈ �L and each v
(�)
i�

∈ �R, � = 1, . . . ,m.
The symbol � represents any choice of “out” or “in” in each integral contour ��

�,L or ��
�,R. By

the definition of f� and the assumption that am + km = min{a� + k� : 1 ≤ � ≤ m} < yN + N ,
we know that F is analytic at −1 along any chain of variable u

(s)
js

, u
(s+1)
js+1

, . . . , u
(m)
jm

with
jm = 1 and any j� satisfying 1 ≤ j� ≤ n� for s ≤ � < m. More explicitly,

F
(
U(1), . . . , V (m))|

u
(s)
js

=u
(s+1)
js+1

=···=u
(m)
jm

=u

is analytic at u = −1 when all other variables are fixed. Thus, we could apply Lemma 8.1.
(98) follows.

When s < m, after applying Proposition 2.17, we only need to prove∮
· · ·

∮ [
m−1∏
�=1

1

1 − z�

]
DY (z1, . . . , zm−1)

dz1

2π iz1
· · · dzm−1

2π izm−1
= 0

if the radius of zs contour is greater than 1.
By using the series expansion formula of DY , it is sufficient to prove

(99)
∮
|zs |>1

1

1 − zs

Dn,Y (z1, . . . , zm−1)
dzs

2π izs

= 0

for any n = (n1, . . . , nm) ∈ (Z≥0)
m. By using the formula (16), we write

Dn,Y (z1, . . . , zm−1)

=
m∏

�=2

n�∏
i�=1

[
1

1 − z�−1

∫
�in

�,L

du
(�)
i�

2π i
− z�−1

1 − z�−1

∫
�out

�,L

du
(�)
i�

2π i

]
·

n1∏
i1=1

∫
�1,L

du
(1)
i1

2π i

·
m∏

�=2

n�∏
i�=1

[
1

1 − z�−1

∫
�in

�,R

dv
(�)
i�

2π i
− z�−1

1 − z�−1

∫
�out

�,R

dv
(�)
i�

2π i

]
·

n1∏
i1=1

∫
�1,R

dv
(1)
i1

2π i

·
[

n1∏
i1=1

(
u

(1)
i1

+ 1
)yN+N

][
m∏

�=1

f�

(
U(�))] ·

[
m−1∏
�=1

C
(
U(�);U(�+1))]

· (1 − zs)
ns

(
1 − 1

zs

)ns+1 · F (U(1), . . . , V (m), z1, . . . , zs−1, zs+1, . . . , zm−1
)
,

where the function F is analytic for each u
(�)
i�

∈ �L.
Below we will use an argument similar to Lemma 8.1. We evaluate the integral with respect

to each u
(s)
is

, 1 ≤ is ≤ ns . Note that the function fs(u
(s)
is

) is analytic at u
(s)
is

= −1 by the as-

sumption that as +ks = min{a� +k� : 1 ≤ � ≤ m}. Therefore only the residues at u
(s)
is

= u
(s+1)
is+1

for some u
(s+1)
is+1

∈ �in
s+1,L, and, if u

(s)
is

∈ �out
s,L, the residues at u

(s)
is

= u
(s−1)
is−1

for some u
(s−1)
is−1

∈
�in

s−1,L ∪ �out
s−1,L survive. Here we used the nesting order of the contours. We claim that the

second type of residues does not contribute after we integrate over u
(s−1)
is−1

. In fact, consid-

ering the fact that fs(u
(s−1)
is−1

)fs−1(u
(s−1)
is−1

) is still analytic at u
(s−1)
is−1

= −1 by our assumption

that as−2 + ks−2 ≥ as + ks , the integral with respect to u
(s−1)
is−1

only leaves a further level of

residues u
(s−1)
is−1

= u
(s−2)
is−2

. This procedure will end at u
(s)
is

= u
(s−1)
is−1

= u
(s−2)
is−2

= · · · = u
(1)
i1

. At

the last step, the integral is 0 since (u
(1)
i1

+ 1)yN+N ∏s
�=1 f�(u

(1)
i1

) is analytic at u
(1)
i1

= −1 due
to the assumption that yN + N ≥ as + ks . This proves the claim. Therefore, only the first
type of residues survive for each u

(s)
is

integral. Note that there are ns such integrals, therefore
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Dn,Y = 0 if ns > ns+1. When ns+1 ≥ ns , we only need to consider the case when there are at
least ns variables u

(s+1)
is+1

chosen from �in
s+1,L.

Note that every time we have a variable u
(s+1)
is+1

∈ �in
s+1,L in the expansion of the integrals,

we get a factor 1
1−zs

. We also have a factor (1 − zs)
ns in Dn,Y . Thus the surviving terms

in Dn,Y are of order O(z
−ns+ns
s ) = O(1) when zs is large. We immediately obtain (99) by

deforming the zs contour to infinity.
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